
SDS1104X-E Review.doc 2018-02-21

 Page 109

Advanced Functions
Math
The math functions (other than FFT) are not exactly a strong point of the SDS1104X-E. They are pretty
basic and I have to admit that I personally only use a few of them: Add, Subtract, Multiply, Integral and
FFT. Other than that, I don’t consider single operator math functions particularly useful, no matter how
many of them were available.

Whenever I have a need for math channels, then I might use more than one of them at the same time,
want to be able to enter complex formulas and expect heavy support through a comprehensive library of
math functions. None of these is available in the SDS1104X-E and this situation is not helped by the
rather loveless implementation of most math operators, which often yields rather ugly, grainy and noisy
results.

Add & Subtract
This is something even old analog scopes could do. In fact, it was only Add and a subtraction was
accomplished by inverting the 2nd channel. There was also no dedicated math channel but the original
traces were simply replaced by the sum of the two input channels.

Like most other DSOs, the Siglent SDS1104X-E has a dedicated math channel that is displayed together
with the original input channels. The math channel has a white trace which doesn’t look particularly pretty,
as it is fat and grainy in most situations.

First is the sum of channels 2 + 3.
Second is the sum of channels 2 + inverted 3, to mimic the subtraction on an analog scope.
Third is the difference of channels 2 – 3, which should give the exact same result – and it certainly does.

SDS1104X-E_Add

SDS1104X-E Review.doc 2018-02-21

 Page 110

SDS1104X-E_Add_InvB

SDS1104X-E_Sub

SDS1104X-E Review.doc 2018-02-21

 Page 111

Multiply & Divide
This could be used for signal gating as well as generating sum and difference frequencies – or producing
a sinusoidal waveform out of two triangles, as in the example below.

SDS1104X-E_Mul

SDS1104X-E_Div

SDS1104X-E Review.doc 2018-02-21

 Page 112

The division as shown above looks reasonably nice and at least the scope is not thrown off track when the
denominator becomes zero.

Integral

SDS1104X-E_Int

The integral function shown in the example above works very well by attenuating the harmonics of the
triangle wave and thus turning it into a sinusoidal waveform.

The integral function is somewhat special in that it has an implicit gate function to calculate a definite
integral. This can be used to display the output of a PWM signal.

SDS1104X-E Review.doc 2018-02-21

 Page 113

Integrate_1ms_persistence_10s

In the example above, a PWM signal has been swept between 0 and 100% duty cycle and the gate for the
integration has been defined for the PWM period. 10s persistence has been used in an attempt to
visualize the dynamic signal in a static screenshot, which has been taken just before the 100% duty cycle
had been reached. The white trace can be interpreted as the output voltage as a function of the duty
cycle. The yellow lines are just previous math traces still visible because of the persistence.

Differential
This is a particularly cumbersome math function that just cannot work well on an 8 bit system. It has a
parameter dx, which determines the interval used for the difference computation. For an accurate and
detailed result, we would want dx to be as small as possible and the lowest value that can be set is 0.02
div. With this setting, we can get totally useless results, as we will see later.

Why is it so? Let’s do some simple math.

The screen is 800x480 pixels, with 700x400 dedicated to the trace area. Since there are 14 horizontal
divisions, one division is 700/14 = 50 pixels wide. The lowest dx parameter would thus be 0.02 x 50 = 1,
which means the difference between two adjacent samples is calculated. This will work well for fast
transitions, but not for a triangle wave, which is about the worst we can throw at the differentiate function.

For the amplitude, the trace area on the screen shows 200LSB of the ADC, and there are 8 vertical
divisions, hence we get 200/8 = 25 LSB per division.

Let’s have a look at a triangle (symmetrical ramp) with 4Vpp and 1kHz. A triangle should turn into a
square when differentiated. One ramp (up or down) takes 500µs or 5 divisions at 100µs/div timebase and
the amplitude is 4 divisions at 1V/div vertical gain. For a slope of 1 as with the triangle, one horizontal
pixel (equivalent to dx=0.02) corresponds to half a LSB in vertical direction. This quite obviously cannot
work and even dx=0.04 means just one LSB per time interval, where we are down in the DNL (differential
nonlinearity) and noise. So no wonder that low dx parameter settings don’t work with slow ramps.

SDS1104X-E Review.doc 2018-02-21

 Page 114

SDS1104X-E_Dif_Ramp_Avg16_2%

SDS1104X-E_Dif_Ramp_Avg16_4%

Even though the noise gets better with increasing time intervals, the results are still not very usable. With
the maximum value 0.4 for dx, we get very slow transitions for the resulting rectangle, yet the math trace
is fat and noisy.

SDS1104X-E Review.doc 2018-02-21

 Page 115

SDS1104X-E_Dif_Ramp_Avg16_40%

A square wave with fast transitions on the other hand is a perfect candidate for the differentiate function,
and particularly so with the lowest possible dx parameter of 0.02.

SDS1104X-E_Dif_Square_2%

SDS1104X-E Review.doc 2018-02-21

 Page 116

Square Root
Might be useful to convert some sensor signal, that represents power, back into voltage/current.

SDS1104X-E_Sqrt

Poor Men’s Differential Probing
With analog scopes, we were able to combine two regular (single ended, ground referenced) channels
into one differential channel. This was done by adding both channels with the 2nd channel inverted, whose
gain had to be fine tuned in order to give a maximum of common mode rejection. Of course, this solution
was far from ideal and sensitivity as well as common mode rejection were rather limited, especially at
higher frequencies, which made it hard to get meaningful results when common mode voltages were high
compared to the differential signal.

Digital scopes generally seem to have pretty much lost that functionality, even though the preconditions
appear good at first glance. After all we have a separate math channel that has its own individual gain and
position, which should be ideal for viewing small signals in presence of large common mode voltages. But
the problems start already when we attempt to fine-adjust the channel gain in order to cancel out the
common mode signal as much as possible; this is just not possible. In fact, the math functions completely
ignore the channel gain settings except for the input attenuator, which just cannot be ignored. This seems
to be convenient at first, as it makes the math channel somewhat independent from the regular channel
settings, but makes it impossible to fine-tune the gain in order to get it equal across the channels.

Furthermore, the individual gain for the math channel doesn’t actually help, as it can only be a software
zoom and an 8-bit resolution is not up to the task, particularly when the math gain is set higher than the
channel gain.

The screenshot below demonstrates the result of two identical signals fed into channels 1 and 2 at 5V/div
and a difference math channel is set to a 5 times higher gain at 1V/div. The result is just an approximately
1 division wide bar. Common mode rejection can be estimated from the amplitude measurements and
would be 1.2V/20.4V = 0.0588 ~ -24.6dB, which is certainly not sufficient for differential measurements.

SDS1104X-E Review.doc 2018-02-21

 Page 117

As a conclusion, poor men’s differential probing doesn’t work with this scope and the same is most likely
true for the majority of other DSOs as well. For tasks that require floating measurements and/or differential
probing, there really is no way around getting the appropriate physical probes.

SDS1104X-E_PoorMen_Diff_Probing

FFT
Now we’ve finally arrived at one of the highlights of the SDS1kX-E series, the 1Mpts Fast Fourier
Transform, which turns the scope into some sort of spectrum analyzer. This can be found in the math
Operator menu, yet it deserves a dedicated chapter simply because it’s almost something like an
instrument within the instrument.

Thankfully, Siglent have implemented a more spectrum analyzer oriented user interface instead of treating
the spectrum plot just like an ordinary Y-t signal trace. This means a big plus in terms of usability.

Even though there are basically no automatic measurements, markers or analysis applications, which is in
contrast to modern spectrum analyzers and higher end DSOs, this does not prevent us from getting all the
answers we could possibly expect when using an 8-bit DSO for analyzing a signal in the frequency
domain. We should not forget that there have been times where even dedicated SAs had barely anything
but a manual marker to determine the approximate frequency at any point of the spectrum – and yet
engineers got their job done.

Generally speaking, we should not get too obsessed with features and gadgets, but concentrate more on
the quality of measurements. All the bells and whistles won’t serve us anyway, unless we get low
distortion and noise, accurate levels, a reasonable high spurious-free dynamic range and adequate
frequency resolution. These are parameters that really matter for any SA and make the difference
between a useful tool or just another “me too” feature.

Because of this, the FFT will be evaluated just like the base functionality on any real spectrum analyzer,
so this is going to be a rather lengthy review.

SDS1104X-E Review.doc 2018-02-21

 Page 118

Basic Operation
This section covers some of the fundamentals of the user interface that need to be understood as a basis
for the following chapters.

FFT is enabled by pressing the [Math] button on the front panel and then selecting “FFT” from the
Operator menu. This will show the FFT window with some random settings and hopefully in Split Screen
mode. If not, go to page 2 of the FFT menu and set this mode there.

FFT_first_open

Screen Modes
This is the very first thing to know; there are three different ways to display the FFT:

 Split Screen
 Full Screen
 Exclusive

Split Screen as has been shown in the previous screenshot is most useful for setting up the
measurement, as it allows the observation of the input signal in the time- and frequency-domain in
parallel. This is important, because as a general rule we want the signal to nearly fill the screen height in
order to maximize the dynamic range. On the other hand, we need to avoid clipping of the input signal and
saturating the ADC by all means, because this will lead to distortions and in turn generate lots of
unwanted harmonics and spurious signals. Consequently, the previous screenshot shows a proper setup
of the vertical gain and/or output of the signal source and this has to be observed during setup.

Full Screen could serve the same purpose as split screen, but now both frequency and time domain are
stacked on top of each other which obscures the grid and its labels and might be distracting in general.
This is also why I personally don’t like this mode very much and rather use Split Screen whenever I need
to see the Y-t display.

SDS1104X-E Review.doc 2018-02-21

 Page 119

FFT_Mode_Full_Screen

Exclusive shows the FFT exclusively and makes the instrument look more like a dedicated spectrum
analyzer. Use this mode once the measurement is properly set up and the input signal amplitude is more
or less stationary.

FFT_Mode_Exclusive

SDS1104X-E Review.doc 2018-02-21

 Page 120

AUTO SET
This can be found on page 3 of the FFT menu and generally does a lousy job. It sets the center frequency
according to the strongest signal, thus could be used as a starting point for narrowband signal analysis.
Other than that, it’s best to stay away from the AUTO SET function and there is no way to avoid setting up
the instrument manually as described later in this document.

FFT_Auto_Set

Units
This submenu can be found on page 2 of the FFT menu. The units used for amplitude measurements, i.e.
the labeling for the Y-axis of the grid, are selected here. The same submenu also allows the specification
of the external load impedance. This is required for the dBm units, which specify a power level instead of
voltage/current.

For general laboratory use, we would universally have an external 50Ω pass-through terminator, hence a
50Ω load impedance. The same is true for most RF applications, even though there are exceptions
especially for the antenna inputs of domestic broadcast receivers. 75Ω is the standard for video signals,
as well as 600Ω for professional Audio. For Audio in general, the use of dBm is not common but might be
useful for characterizing the output of power amplifiers, where it comes in handy that the Siglent FFT
allows us to specify load impedances down to 1Ω.

dBVrms is the relative voltage level expressed in decibel with reference to 1Vrms. This is the right setting
for (unspecified) high impedance source/load configurations.

Vrms is the absolute voltage, which also means that we get a linear Y-axis that severely limits the
dynamic range that can be displayed. I really don’t see much use for that.

dBm is the relative power level expressed in decibel with reference to 1mW into the specified load
impedance. This is the preferred unit for general laboratory use as well as RF applications.

The screenshot below shows how the FFT is set up for dBm units and 50Ω external load. At the same
time, an external 50Ω pass-through terminator has been fitted for channel 4.

SDS1104X-E Review.doc 2018-02-21

 Page 121

FFT_Units

Window
Another important setting is the window function on page 1 of the FFT menu.

FFT_Windows

SDS1104X-E Review.doc 2018-02-21

 Page 122

This is roughly equivalent to selecting the properties of the final IF filters in a real SA. Of course, the latter
do not offer such a choice, apart from the selectable IF bandwidth. But FFT works differently than a swept
spectrum analyzer; we cannot set the analysis bandwidth directly and the “final IF filter” is just some signal
processing on a limited set of sample data (record) gathered within a certain time interval, where the
actual input signal is not zero outside this interval. This causes computation errors and produces artifacts.
This is why the window function is required to do some pre-conditioning on the sample data and it comes
down to providing a suitable compromise between bandwidth, amplitude accuracy, filter shape and
selectivity including leakage (side lobe suppression). The simplest window is the rectangle which has the
narrowest -3dB bandwidth but very poor properties otherwise. Historically a number of window functions
exist that provide a better compromise at the expense of an increased -3dB bandwidth. Some window
functions have been particularly optimized for a certain property and these are also the most beneficial
ones for practical use – in my book, at least.

The table below gives an overview of the window functions available in the SDS1104X-E. Note that some
windows have parameters (Hanning in this selection) and I do not know what Siglent has actually
implemented, so the table can only show a span of properties for the usual range of these parameters.
Also note that “Bins” refers to what is displayed as “Δf” (frequency step) within the FFT window.

Window -3dB BW

(Bins)
Max. Side
Lobe [dB]

Side Lobe
roll-off
[dB/Oct.]

Remark

Rectangle 0.89 -13.2 6 Min. 3dB bandwidth, used for short transients
Blackman 1.68 -58 18 High side lobe suppression, used for audio
Hanning 1.20 ~ 1.86 -23 ~ -47 12 ~ 30 Used for audio and vibration measurement
Hamming 1.30 -41.9 6 Used for speech analysis
Flattop 2.94 -44 6 Negligible pass band ripple, used in spectrum

analyzers and for calibration

Many more window functions do exist and I personally would love to have Gaussian and particularly
Blackman-Harris available, but that’s not really a problem, especially not for an 8-bit system. For the time
being I have the following recommendation for anyone who just wants to use the FFT right away without
striving for an university degree in digital signal processing (RBW = Resolution Bandwidth):

 Use Flat-Top whenever best amplitude accuracy is important. RBW ~ 3 x Δf
 Use Blackman otherwise, especially when a high dynamic range is desired. RBW ~ 1.7 x Δf

The following screenshots show all available window functions in two situations:

1. Sine, 5MHz, 0dBm, displayed at 1kHz/div to show the selectivity and filter shape
2. Sine, 5MHz, -3dBm and 50% AM with 5kHz, displayed at 5kHz/div

SDS1104X-E Review.doc 2018-02-21

 Page 123

SDS1104X-E_FFT_Rectangle

SDS1104X-E_FFT_Mod_Rectangle

SDS1104X-E Review.doc 2018-02-21

 Page 124

SDS1104X-E_FFT_Blackman

SDS1104X-E_FFT_Mod_Blackman

SDS1104X-E Review.doc 2018-02-21

 Page 125

SDS1104X-E_FFT_Hanning

SDS1104X-E_FFT_Mod_Hanning

SDS1104X-E Review.doc 2018-02-21

 Page 126

SDS1104X-E_FFT_Hamming

SDS1104X-E_FFT_Mod_Hamming

SDS1104X-E Review.doc 2018-02-21

 Page 127

SDS1104X-E_FFT_Flattop

SDS1104X-E_FFT_Mod_Flattop

Display Modes
Normal mode will reflect any input signal change instantly and completely on the following FFT trace.

SDS1104X-E Review.doc 2018-02-21

 Page 128

SDS1104X-E_FFT_Mode_Normal

Max-Hold only keeps the long-term maximum values for each frequency bin.

SDS1104X-E_FFT_Mode_Peak_Hold

SDS1104X-E Review.doc 2018-02-21

 Page 129

Average builds the sliding average over the number of records specified by the Times soft menu item,
which can be set to any value between 4 and 1024.

SDS1104X-E_FFT_Mode_Average16

FFT-Bandwidth and RBW
This is quite different to a real SA. There is no menu for the resolution bandwidth and also no direct
setting for the FFT-bandwidth, even though we have a soft menu item for the horizontal scale in Hz/div,
which ultimately specifies the visible span. But this is just for zooming into a longer FFT trace and for best
speed and lowest RBW we need to make sure that no high zoom factor is required to get the display we
want. The following rules apply:

 The analysis bandwidth (FFT-BW) is always half the sample rate.
 The frequency step (∆f) is the sample rate divided by the number of FFT points.
 The resolution bandwidth (RBW) is the frequency step multiplied with a factor specific for the

window function in use.
 The number of FFT points depends on the record length, which in turn increases with slower

timebase settings, but is ultimately limited by the maximum memory set in the Acquire menu.

The following table shows the FFT bandwidth (column BW) and frequency step (delta frequency, column
df) for all possible memory depths as specified in the Acquire menu and for timebase settings from
10ns/div up to 1s/div for both channels within a channel group enabled. Keep in mind that the frequency
step has to be multiplied by the factor specific for the applied window function in order to know the -3dB
resolution bandwidth. That factor can be found in the column -3dB BW of the table that summarizes the
available window functions in the Window section.

SDS1104X-E Review.doc 2018-02-21

 Page 130

SDS1104X-E_2CH_FFT_BW_Step

Why did I limit the timebase range to 10ns – 1s? The scope can certainly do a much wider range? The
lower limit is 10ns/div just because this already means a FFT length of only 64 points in dual channel
mode. This is about the limit for any useful FFT and there is certainly no advantage whatsoever going any
lower. It is different for the upper limit and there is basically nothing wrong with timebase settings slower
than 1s/div. This would allow us to get extremely narrow frequency steps and resolution bandwidths in
turn. But then, even with just 1s/div, one single acquisition already takes a healthy 14 seconds and
frequency steps down to some 0.1Hz are obtained. I felt this should cover the vast majority of use cases.

If only one channel in a group is enabled, the max. sample rate as well as memory depth will be doubled.
During my experiments, I got the impression that this operating mode generates slightly less spurious
signals. The table for single channel (interleaved) mode is shown below.

SDS1104X-E Review.doc 2018-02-21

 Page 131

SDS1104X-E_1CH_FFT_BW_Step

IMPORTANT: Please note that these tables are not guaranteed to be entirely correct as they just contain
calculation results and not collected data from the real scope – it would have been rather time consuming
to actually try all these combinations on the instrument. The sample rate in the SDS1kX-E might not
always be in accordance with my calculations, yet most results should be correct and the tables good
enough for determining the appropriate settings for a certain bandwidth / frequency step combination.

For even greater convenience, I’ve prepared a set of tables that show all appropriate settings for any
available combination of analysis bandwidth & frequency step. To use these tables, proceed as follows:

1. Look at all table entries that show the desired analysis bandwidth in column BW [Hz].
2. Pick the entry with the desired frequency step in column df [Hz]. Note that there are two such

columns, one for dual channel (individual) and another one for single channel (interleaved)
configuration.

3. Use the associated entries for timebase TB [s] and Max. memory depth Mem [Pts] to configure
the scope accordingly.

4. The FFT [Pts] entry is there just as additional information about the actual FFT length.

SDS1104X-E Review.doc 2018-02-21

 Page 132

SDS1104X-E_FFT_Setup_500MHz

SDS1104X-E_FFT_Setup_125-250MHz

SDS1104X-E Review.doc 2018-02-21

 Page 133

SDS1104X-E_FFT_Setup_12.5-100MHz

SDS1104X-E_FFT_Setup_1.25-10MHz

SDS1104X-E Review.doc 2018-02-21

 Page 134

SDS1104X-E_FFT_Setup_125kHz-1MHz

SDS1104X-E_FFT_Setup_10-100kHz

As an example, let’s assume we want to perform an analysis in the audio range up to 20kHz, which would
then be our desired analysis bandwidth. In the last table SDS1104X-E_FFT_Setup_10-100kHz we cannot
find 20kHz, so we pick the next higher value, that is 25kHz. For this bandwidth, we get a total of five
choices: three for dual channel configuration with frequency steps of 12.2Hz, 0.763Hz and 0.095Hz as
well as another two for single channel configuration with frequency steps of 6.1Hz and 0.382Hz. If we use
the Blackman window (recommended), we have to multiply the frequency step by 1.7 in order to get the
effective -3dB resolution bandwidth. With single channel configuration, 200ms/div and 140k max. memory
depth we get a frequency step of 0.3815Hz and the resolution bandwidth will be about 0.65Hz. Acquisition
time will be 200ms x 14 = 2.8s, hence FFT update rate will be slow no matter how powerful the signal
processing might be. Dealing with low frequencies and narrow frequency steps just takes its toll, there’s
no way to get around this.

Setting up an FFT Measurement
Even from the best FFT implementation, we can only expect good results as long as the scope has been
set up properly for that specific task. How many so called “reviews” have we seen where FFT has been

SDS1104X-E Review.doc 2018-02-21

 Page 135

engaged and then some scope settings have been randomly altered just to get some halfway plausible
but actually rather meaningless FFT graph, which was then either praised or criticized? Of course we can
get away with some quick & dirty setup if we just want to get a quick overview, but for optimal speed,
frequency resolution and dynamic range, we need to put a little more effort into a proper setup, which has
quite different requirements compared to the usual Y-t view. Below there is a complete checklist how to
properly set up the DSO for analysis in the frequency domain:

1. Set acquisition mode to normal. Use average only for a good reason and stay away from Eres.
Avoid Peak Detect under all circumstances and without any exception!

2. Use edge trigger in auto mode to make sure signal acquisition doesn’t stop even when the signal
amplitude drops below the trigger sensitivity. FFT doesn’t absolutely require a stable trigger by the
way, but it certainly doesn’t hurt, especially for narrowband analysis.

3. Determine the lower bandwidth limit for the FFT analysis. If it is >3Hz, use AC-coupling for the
input channel to ensure maximum dynamic range even with large DC offsets and/or high input
sensitivities.

4. Determine the upper bandwidth limit for the FFT analysis. In order to avoid aliasing artifacts, this
should not only cover the desired analysis bandwidth, but include the highest expected input
frequency. In general, it’s best to start with a higher upper bandwidth limit and reduce it only after
it has been confirmed that there is no significant signal content above the desired final limit.

5. Choose the frequency step size, which would be about half the required resolution bandwidth.
6. Find an appropriate set of horizontal timebase and max. memory depth settings by means of the

tables provided in the FFT-Bandwidth and RBW section earlier in this document and setup the
scope accordingly. Be aware that the desired resolution bandwidth might not be achievable due to
the limited choice of sample rates and memory depths and/or the maximum FFT length of 1Mpts.

7. Engage FFT mode, select the correct source channel and start with Split Screen mode.
8. Set the vertical gain so that the peak amplitude of the input signal is between ±2 to ±4 divisions.
9. Set the FFT center frequency to the arithmetic mean between lower and upper bandwidth limit.
10. Set the FFT frequency scale so that the desired analysis bandwidth is displayed on the screen.
11. Set the desired level units and make sure the external load impedance matches reality whenever

working with power levels, i.e. dBm.
12. Set the reference level and vertical scale so that the FFT amplitude range of interest makes best

use of the available space.
13. Setup automatic peak-peak (and maybe RMS) measurement for the input channel, as well as Max

for the math channel. During frequency domain analysis, especially in Exclusive mode, keep an
eye on the Vpp measurement for the input channel to make sure no overload occurs.

14. Select an appropriate window function; refer to the Window section earlier in this document.

Hint: stay in Split Screen mode until the amplitude setup is finished and the levels are reasonably stable,
then switch to Exclusive mode. By keeping an eye on the peak to peak measurement of the input signal,
you can still detect an overload condition instantly; the scope indicates that by displaying > instead of = in
front of the measurement value, e.g. Pk-Pk[4]>796.00mV instead of Pk-Pk[4]=640.00mV.

Looking at IF Signals
Sometimes we want more resolution bandwidth than a 1Mpts FFT can provide. Assume a professional HF
communications receiver that has an IF of 81.4MHz, where we want to analyze a 400Hz AM signal within
the IF signal chain. We could try to do that by setting up a 100MHz analysis bandwidth and using
maximum FFT length. According to table SDS1104X-E_FFT_Setup_12.5-100MHz this can be done by
setting the timebase to 500µs/div and max. memory depth to (at least) 1.4Mpts in single channel
(interleaved) mode. This results in a frequency step of 190.7Hz, which is just too wide for properly
analyzing sidebands that are only 400Hz away from the carrier.

SDS1104X-E Review.doc 2018-02-21

 Page 136

SDS1104X-E_FFT_AM_400Hz_81.4MHz

Even with the rectangle window (which gives the most narrow resolution bandwidth), we don’t get enough
frequency resolution to distinguish the sidebands from the carrier. We can try something different though:

SDS1104X-E_FFT_AM_400Hz_81.4MHz_US

Since an IF signal is bandwidth limited (hence no risk of aliasing), we can downconvert it just by
undersampling. Any ADC acts as a mixer, thus producing a spectrum of ±n x fi ± m x fs, where fi is the

SDS1104X-E Review.doc 2018-02-21

 Page 137

input frequency and fs is the sample clock, whereas n and m are just integers running from 0 to
(theoretically) infinity. During normal operation, we don’t want to see any mixer products, which is perfectly
possible as long as the input signal and all its harmonics don’t exceed fs/2 and the output of the ADC has
a brick-wall filter (then in the digital domain of course) that removes everything above fs/2. But in some
circumstances, we can make use of a certain high-order mixer product, just as in this example, where the
effective FFT sample rate is only 2MSa/s, which is obviously much too low for an 81.4MHz signal.

According to the formula given above, we are aiming at the mixer product for -1 x fi + 41 x fs, which is

41 x 2MHz – 1 x 81.4MHz = 82MHz – 81.4MHz = 600kHz;

Now if we set the center frequency to 600kHz, we get the carrier at 81.4MHz and can also clearly see the
sidebands 400Hz apart from it. 16x Averaging has been used in order to get a clean and stable display.

There are several drawbacks though:

 With this mixing scheme, we get the result in reverse frequency position, i.e. the upper sideband
appears below the carrier and vice versa.

 Mixing with the 41st harmonic of the sample clock introduces also 41 times more phase noise and
jitter and it clearly shows in the FFT plot. Just look at the filter shape of the individual spectral
lines.

 Amplitude accuracy is pretty much gone, as a harmonic mixing process cannot be as efficient as
the fundamental one, hence we get about 4.6dB attenuation. Note that I had to reduce the input
level by 3dB compared to the first screenshot in order to avoid input overloading, so 3dB of the
total difference are caused by that and not by the measurement error due to harmonic mixing.

So this is not an ideal application, just some emergency measure to get a result – following the motto “a
compromised measurement is better than nothing at all …”

Performance Test
Up to now, we have just explored the possibilities to properly set up an optimal FFT analysis for various
tasks, but we have not checked the actual performance of the FFT implementation in the SDS1104X-E.
We can often hear opinions suggesting that the FFT length is the most important factor and if this were
true, the Siglent SDS1kX-E series with 1Mpts max. FFT length would be hard to beat. Actually, FFT length
only determines the frequency resolution and noise. Yet for the majority of tasks, like characterizing an
unknown signal and interference hunting, we don’t really need an extremely high frequency resolution.
Likewise, for the vast majority of measurements with a DSO, noise isn’t the limiting factor either.
Consequently, a long FFT is nice to have, but most of the time a high spurious-free dynamic range and
low harmonic and intermodulation distortions would be much more important. For this, an 8-bit sampling
system sets tight limits with about 49dB dynamic range, which cannot be changed by increasing the FFT
length or any other averaging techniques. We can indeed get more than that in certain scenarios and an
e.g. 70dB dynamic could easily be demonstrated with a special setup, but this is not universally true and
ironically fails just for the majority of real world applications. So while we should not expect any wonders,
the FFT in this scope is still a very powerful implementation and very useful tool within the constraints of
the 8-bit acquisition system.

Amplitude Accuracy
Analyzing a signal in the frequency domain is about exploring its spectral components with their
amplitudes and maybe also relative phases. Well, we obviously don’t get any phase information and this is
quite common in DSO-FFT implementations as well as scalar spectrum analyzers. But we do expect
decent amplitude accuracy within the dynamic range of the 8-bit system, at least when using the Flattop
window. For this test, a 50MHz sine from a DDS function generator is fed into channel 4 of the scope via a
precision step attenuator and this combination is capable of providing a fairly accurate amplitude range of
more than 120dB. Let’s start with 0dBm using the low noise gain of 100mV/div and an analysis bandwidth
of 100MHz so we can see all the spurious signals generated by the scope itself.

SDS1104X-E Review.doc 2018-02-21

 Page 138

SDS1104X-E_FFT_100mV_Amp_0dBm

The signal strongest spur at 75MHz is -62dBm, hinting on a spurious free dynamic range of ~62dB.

SDS1104X-E_FFT_100mV_Amp_-10dBm

With a signal level of -10dBm, the spurious signals at 25 and 75MHz have dropped by nearly 10dB as
well, which indicates they are directly input signal related. In contrast, the spur at 62MHz is even stronger
now, so it’s only loosely related to the input signal level. The next screenshot shows a -20dBm signal:

SDS1104X-E Review.doc 2018-02-21

 Page 139

SDS1104X-E_FFT_100mV_Amp_-20dBm

The spurs at 25 and 75MHz have dropped even further, while the one at 62MHz remains fairly constant.

SDS1104X-E_FFT_100mV_Amp_-30dBm

At -30dBm the spur at 75MHz has completely vanished, but the other two remain at -75dBm.

SDS1104X-E Review.doc 2018-02-21

 Page 140

SDS1104X-E_FFT_100mV_Amp_-40dBm

At -40dBm, there are only a couple ADC LSBs used anymore and linearity gets worse. A new maximum is
reached at 62MHz and several other spurs have emerged.

SDS1104X-E_FFT_100mV_Amp_-50dBm

Up to this point, the Max measurement on the FFT has been pretty accurate, but now it catches on the DC
component and has therefore become meaningless. Other than that, the signal level is displayed as some

SDS1104X-E Review.doc 2018-02-21

 Page 141

-48dBm, so we’re starting to lose accuracy as we’re finally approaching the limit of the 8-bit dynamic
range.

SDS1104X-E_FFT_100mV_Amp_-60dBm

At -60dBm, the spectral line for the signal drops dramatically, showing some -73dBm. Even though there
is no visible noise and only one substantial spur, the range below -50dBm is simply unusable for single
signal measurements due to the constraints of the 8-bit sampling system. So don’t make the mistake to
think you have 80dB+ dynamic range, just because the noise floor appears so low and only few spurious
signals are visible – which by the way comes as no surprise in this scenario, because all harmonics
related to the 50MHz signal are outside the analysis bandwidth.

One might wonder how low we can go with the amplitude measurements. Up to now, we could
demonstrate that it works fairly well down to -50dBm, which is just 707µVrms or 2mVpp. This is almost as
sensitive as most AF or RF Millivolt meters with the added benefit of the selective measurement that
ignores harmonics as well as most of the noise. But we can do better…

Up to this point we have been using 100mV/div gain throughout this test and could demonstrate accurate
measurements down below one mV. By increasing the channel gain to 1mV/div there should be a boost in
sensitivity by 40dB and we can hope to measure signal levels down to -90dBm, equivalent to 7µVrms!

The screenshot below shows the 50MHz signal at -40dBm. Due to the high channel gain, the noise level
is down below -110dBm, but there are lots of spurious signals, not input signal related, just electrical noise
and interference from inside the scope itself. The level of this is pretty low and there is certainly no reason
to complain about spurs below -80dBm (<22µVrms), especially not for a cheap entry level DSO like the
SDS1104X-E. Yet this ultimately limits the ability to measure unknown weak signals to about 10µVrms
whereas for known signals like in this test we would be able to go even lower and the proposed -90dBm
should be realistic.

SDS1104X-E Review.doc 2018-02-21

 Page 142

SDS1104X-E_FFT_1mV_Amp_-40dBm

SDS1104X-E_FFT_1mV_Amp_-80dBm

At -80dBm as shown above, the automatic Max measurement has become useless again because of the
DC component, but the spectral line for the signal still shows a pretty good level accuracy. As expected,
all the spurs remain unchanged as they are all generated internally by the scope itself.

SDS1104X-E Review.doc 2018-02-21

 Page 143

SDS1104X-E_FFT_1mV_Amp_-100dBm

SDS1104X-E_FFT_500uV_Amp_-110dBm

As can be seen in the screenshots above, we can even measure the level of a known signal at -100dBm,
that is 2,24µVrms or 6,32µVpp. This is the absolute limit though and the test fails at -110dBm, where the
magnitude of the displayed spectral line is off by several dB even with the maximum channel gain of
500µV/div.

SDS1104X-E Review.doc 2018-02-21

 Page 144

Harmonic Distortion
Another common task for frequency domain analysis is measuring the harmonics of a signal. Quite
obviously, the harmonic distortion generated within the analyzer is a limiting factor for such
measurements, hence it should be fairly low. Once again we’ll have to face the limitations of an 8-bit
system and cannot expect any better than about -46dB, which would be equivalent to 0.5% THD.

I’ve checked the harmonic distortion of the SDS1104X-E for several frequencies from 1MHz to 30MHz. Of
course this test requires a low distortion sine wave, so the quality of the signal source has to be verified
beforehand. This is done by means of a “proper” SA utilizing its “Harmonic Viewer” application. Below is a
screenshot exemplarily showing the result for the 5MHz test signal.

THD_Ref_5MHz

All the harmonics stay well below -60dBc at that frequency, which should be good enough for
characterizing an 8-bit system.

Now let’s see how the SDS1104X-E performs. The following screenshots demonstrate the harmonic
distortion at 2, 5, 10 and 30MHz. Higher frequencies have not been tested, because the important 3rd
harmonic would be outside the bandwidth of this scope. 1MHz has been tested as well, but the result was
practically identical to the 2MHz test, so it has been omitted here.

No automatic measurements for the harmonics are available, but tracking cursors on the math trace are a
near perfect tool to both measure and highlight (in the screenshots) the strongest harmonic.

As can be seen, the strongest harmonic is the 3rd and starting at about -53dBc at 2MHz it slowly degrades
to -47dBc at 30MHz. All in all this is a fair bit better than expected and hints on a very good ADC linearity,
i.e. its INL has to be better than 1LSB, even at high frequencies. This test would also reveal any problems
within the frontend, but there is nothing to complain either. Please note the relatively low level of higher
order harmonics and spurs!

The conclusion can only be, while this scope certainly isn’t up to the task of characterizing low distortion
sine waves, high fidelity audio gear or high performance RF circuits, it still performs pretty good for the
majority of undemanding tasks with less strict requirements.

SDS1104X-E Review.doc 2018-02-21

 Page 145

SDS1104X-E_FFT_THD_2MHz

SDS1104X-E_FFT_THD_5MHz

SDS1104X-E Review.doc 2018-02-21

 Page 146

SDS1104X-E_FFT_THD_10MHz

SDS1104X-E_FFT_THD_30MHz

Two Tone Test
The key specification for every spectrum analyzer in terms of practical use for narrowband measurements
is its 3rd order dynamic range, usually expressed as IIP3 (3rd order Input Intermodulation Intercept point).

SDS1104X-E Review.doc 2018-02-21

 Page 147

In short it’s the ability to measure weak signals in presence of strong ones without generating unwanted
3rd order mixing products, which would appear near the original signals, thus creating a chaotic mix of
wanted and unwanted (or better: relevant and irrelevant) signals – with the risk of unwanted signals even
totally obscuring the real ones.

This test uses two input signals at 9 and 11MHz, both at a 0dBm level initially. The 9MHz signal is then
attenuated step by step in order to check the amplitude accuracy of the measurements. At the same time,
the 3rd order mixing products at 7 and 13MHz are measured, so the resulting IMD (intermodulation
distortion) can be estimated.

The screenshots below show the results for 0, -20, -30, -60 and -70dBm.

The 0dBm test would be the classical setup for determining the 3rd order intercept point. The unwanted
product at 7MHz is weaker at -72dB, but the opposite intermodulation product at 13MHz isn’t strong either
at only -66dB. This means a 3rd order intermodulation distortion of -66dB at 0dBm input level and the input
intercept point would thus be a healthy +33dBm for a channel gain of 200mV/div.

At -20dBm, the intermodulation product at 7MHz vanishes (goes below -80dBm), the same is true for the
13MHz product at -30dBm. That’s fairly decent and when looking at the other spurious signals, we can
conclude that despite the 8-bit system, we can get at least 60dB dynamic range for narrowband
applications like this.

We can also measure levels below -50dBc quite accurately, simply because the 2nd signal stays fixed at
0dBm and serves as a dither for the ADC. As can be seen, measuring -70dBc isn’t a problem at all. Just
for fun, I’ve added a measurement at -76dBm level, which still works surprisingly well.

SDS1104X-E_FFT_IM3_0dBm

SDS1104X-E Review.doc 2018-02-21

 Page 148

SDS1104X-E_FFT_IM3_-20dBm

SDS1104X-E_FFT_IM3_-30dBm

SDS1104X-E Review.doc 2018-02-21

 Page 149

SDS1104X-E_FFT_IM3_-60dBm

SDS1104X-E_FFT_IM3_-70dBm

SDS1104X-E Review.doc 2018-02-21

 Page 150

SDS1104X-E_FFT_IM3_-76dBm

Application Examples
In this chapter we’re looking at some more practical examples for using the SDS1104X-E FFT.

Wideband Measurement
We can plot the frequency response of the SDS1104X-E in the range of 1MHz to 250MHz using its FFT
and an external signal source that covers the entire frequency range. There are three possibilities:

1. A wideband white noise source would ideally output a continuous spectrum of all frequencies at
the same time. Unfortunately, such noise sources with a completely flat spectrum up to 250MHz
aren’t that easy to find and if so, they are certainly anything but cheap.

2. A pulse generator that outputs extremely narrow pulses with near zero transition time will create a
discrete spectrum with a spectral line at constant amplitude for every f x n, where f is the repetition
frequency of the pulse and n is any integer value from 1 to infinity. Once again, such a pulse
generator is anything but common or cheap – e.g. 3.5ns pulse width and 1ns rise time would only
be good up to some 30MHz.

3. A swept sine signal can provide near ideal amplitude accuracy, it just takes quite a while to build
up the complete frequency response plot.

I’ve tried all three methods (using my limited resources), and unsurprisingly the third one yielded the best
results by far. A sine wave with 0dBm amplitude, swept from 1MHz to 250MHz within 60 seconds was fed
into channel 4 of the SDS1104X-E. The FFT has been setup for 250MHz analysis bandwidth, i.e. 2µs/div
timebase and memory depth limited to 14kpts, yielding a frequency step of 61kHz, which is just perfect for
this task.

SDS1104X-E Review.doc 2018-02-21

 Page 151

SDS1104X-E_FFT_Sweep_1M-250MHz_init

SDS1104X-E_FFT_Sweep_1M-250MHz_final

In order to collect all individual measurements, we use the Max-Hold Display mode. The first screenshot
shows the trace after the first scan (after some 60 seconds), whereas the 2nd screenshot demonstrates
how a near perfect frequency response graph can be obtained by just waiting several minutes until the
maxima for all horizontal pixels have been registered. Of course, the same result could be obtained after

SDS1104X-E Review.doc 2018-02-21

 Page 152

the initial sweep if it were made much slower, but with the faster sweep we get a quick overview and then
only need to wait any further if the result actually meets our expectations.

Narrowband Measurement
We can look at the IF signal of a domestic FM receiver at 10.7MHz, with a 1kHz frequency modulation
and 50kHz max. deviation. For this we choose an analysis bandwidth of 25MHz – 12.5MHz would be even
better, but we’d need to enable the 2nd channel in the group (Ch. 3 in this example) since this BW is only
available in dual channel mode. We want the best possible frequency resolution, so we choose the
longest FFT with 1048576 points, providing a frequency step of 47.7Hz. This leads us to 2ms/div timebase
and 1.4Mpts memory depth and we just need to adjust the center frequency to 10.7MHz and set a span of
200kHz by selecting a horizontal scale of 20kHz/div.

SDS1104X-E_FFT_FM_10.7MHz

Signal burried in Noise
FFT can help to find weak signals completely buried in noise, hence invisible in the time domain. The
example below shows a -20dBm 11.111MHz signal hidden under a 680mVpp noise floor. In the time
domain, we can only see the noise and wouldn’t even know about the -20dBm signal. The FFT over the
full scope bandwidth shows that signal very clearly.

SDS1104X-E Review.doc 2018-02-21

 Page 153

SDS1104X-E_Noise100mV_Sig-20dBm_11111kHz

Broadcast

SDS1104X-E_FFT_Broadcast

The Screenshot above shows the broadcast signals over a 100MHz bandwidth captured with just a piece
of wire (about 10m long) as antenna. We can see everything from VLF up to the local VHF radio stations.

SDS1104X-E Review.doc 2018-02-21

 Page 154

Mask Testing
This is usually not a very popular feature – and for a reason; it often comes as an expensive option and
has the reputation to be a tool exclusively for production tests. The latter might also explain why its
implementation is agonizingly slow on many scopes, just capable of analyzing a couple of acquisitions per
second. This might be sufficient for production tests, but makes it almost useless for anything else.

Thankfully, Siglent went a different route as they have understood the potential of a more ambitious
approach on mask test (Siglent calls it “Pass/Fail”) and it comes as a standard feature for free. The
implementation on the X-series DSOs works pretty much at the same speed as normal acquisition and the
maximum fault detection rate is close to the usual trigger rate aka “waveform update speed”.
Consequently, mask testing can be a very useful tool for glitch hunting and fault finding, yielding a
reasonably high probability for capturing a rare glitch. With one of the more common ridiculously slow
implementations, it might take forever until a rare and very brief mask violation finally gets detected.

The table below shows the maximum fault detection rate for a 2MHz input signal at various timebase
settings from 1ns/div up to 10µs/div. The table also shows the expected detection rate in percent of the
total number of faults as well as the average time for detecting a glitch that has a repetition rate of 1Hz.

SDS1104X-E_Mask_Test_Detection_Rate

As an example, let’s assume a step-up curve where the bottom step is occasionally missing. The signal
repetition rate is 2MHz and the fault occurs at 20Hz, hence an original fault rate of 1:100000 or 0.001%.

At the sweet spot of 50ns/div we get a max. fault detection rate of 107600 acquisitions per second, hence
a theoretical probability for capturing the fault of

Fault_detection_rate x timebase x horizontal_divisions = 107600 x 50e-9 x 14 = 0.07532 = 7.532%;

The screenshot below demonstrates this very situation, showing the pass/fail statistics after 177 seconds
runtime: a total number of 19076721 (19 million!) tests and 267 fault detections. The actual fault rate was
20Hz, resulting in a total of 20 x 177 = 3540 faults where 267 got detected. 267 / 3540 = 0.0754 = 7.54%;
Average detection time was 177s / 267 = 0.663s and for 1Hz fault rate this would be 0.663s x 20 = 13.26s.
So these measurements confirm the theoretical numbers given in the table above very nicely.

Don’t forget to turn display persistence on in order to clearly see where the mask violations have occurred.
It’s the red traces in the screenshot, indicating that the bottom step gets cropped occasionally. With this
information, one could easily find an appropriate (e.g. runt) trigger to capture the glitch itself and look for
related signals that might be causing the fault directly or indirectly.

SDS1104X-E Review.doc 2018-02-21

 Page 155

SDS1104X-E_Masktest_50ns_2MHz_20Hz_177s

Another option is enabling the Stop on Fail option on page 2 of the PASS/FAIL menu. This will stop the
acquisition after the first mask violation has been detected, as shown in the screenshot below.

SDS1104X-E_Masktest_50ns_2MHz_20Hz_Stop

SDS1104X-E Review.doc 2018-02-21

 Page 156

Another channel is used to monitor a signal that is suspected to be related to the fault and sure enough it
is, as can be seen in this screenshot already thanks to the display persistence. Now we can disable mask
test and enter the history:

SDS1104X-E_Masktest_50ns_2MHz_20Hz_Hist_Last

SDS1104X-E_Masktest_50ns_2MHz_20Hz_Hist

SDS1104X-E Review.doc 2018-02-21

 Page 157

The first screenshot shows the last history frame that holds the acquisition with the mask violation. We
can clearly see that the signal at channel 2 is closely related to this event. Any other history frame just
shows the normal signal without a fault together with the inactive signal on channel 2 and the 2nd
screenshot gives an example for this.

You might ask what the advantages of mask testing are compared to just using (infinite) display
persistence alone. Well, there is a couple…

 We might have less stationary signals that require wider tolerances on the mask setting. With
such an unstable signal, any violation would be harder to spot with just persistence alone,
whereas in the mask test, they stick out in red color.

 Mask test provides some statistics if Msg Display is turned on. By knowing the number of tests
and faults, we can estimate the fault rate, which might give valuable hints on where to look for the
culprit.

 We can set mask test to stop after the first occurrence of a mask violation. This allows the close
examination of the situation including related signals.

We can calculate the fault rate by dividing the detected faults by the total number of tests. In this example,
it would be 267 / 19076721 ~ 14e-6; this is not exactly the true fault rate which would be 20Hz/2MHz =
10e-6, but certainly close enough to make a guess what other signal might be related to the glitch. We
would only consider slow signals (or conditions) with a repetition rate <30Hz and could concentrate on
observing these. Likewise, it could be a problem in our firmware and we would use a GPIO to generate a
signal that allows us to monitor a critical region in the firmware with the scope and see whether the fault
consistently occurs when the code in that region is being executed.

Web Server
For the first time, a Siglent DSO has a built-in web server. It is nothing exciting, and does not show a live
view of the DSO screen, so it’s by no means a substitute for an USB scope. It just allows remote setup of
the most common functions and pulling individual screenshots. A nice first shot nevertheless…

SDS1104X-E_IP_setting

SDS1104X-E Review.doc 2018-02-21

 Page 158

On page 2 of the Utility menu, we can set up the IP configuration. This is totally easy as long as a network
router with integrated DHCP server is available. All that’s needed is enabling DHCP and waiting a moment
until the scope has received its individual IP address, see screenshot above. In a simpler network without
DHCP server, the IP address, Subnet Mask and Gateway have to be set manually – I have tried that as
well and it works as expected.

On page 4 of the Utility menu a password for web server access can be set. I haven’t bothered to do this,
as I hate passwords (which I tend to forget) and my local network isn’t accessible from the internet.

SDS1104X-E_WEB_Password

On the local computer, we just need to open a web browser and type the scope’s IP address into the
address bar. After hitting [Return] the home screen of our web server appears.

SDS1104X-E Review.doc 2018-02-21

 Page 159

WEB_Start

This contains some useful information about the instrument, like model, serial number and firmware
version. This screen offers access to the LAN configuration as well as the Instrument Control. Let’s have a
look at LAN Configuration first.

SDS1104X-E Review.doc 2018-02-21

 Page 160

WEB_Settings

Nothing fancy here and I assume the screenshot is self-explanatory.

So let’s move on to the actually interesting part, the Instrument Control.

SDS1104X-E Review.doc 2018-02-21

 Page 161

WEB_Control

We get an initial snapshot of the DSO screen and can do a screen refresh anytime we want – it just isn’t
fast; even on a Gbit network, it takes up to 3s to load a new screenshot, at least on my ancient computer.

We can configure the most basic settings, but even for this, not all options are available. For example, we
cannot choose the interpolation method in the Acquire section and the Display section does not even offer
Color mode. Likewise, not all trigger types are available. The Vertical section does not provide the
Deskew and Invert Options. The available Measurements appear to be fairly complete, but here again, the
options for Gate, Statistics and All Measurements are missing. All in all it’s a really basic control
application that doesn’t support any of the more advanced features of the SDS1104X-E. I’m not sure if it
really would be sensible to offer much more, as a true remote operation of the scope makes little sense
without a live view anyway. I look at the web server more as a demonstration tool to play with remote
commands and the most common tasks would be getting screenshots from the scope without the need for
an USB flash-drive.

Screenshots can be saved by clicking Save Screen and then a bitmap file is stored in the web browser’s
default download directory. Alternatively, the usual methods for getting an image from a website can be
applied, like right-click on the screen image and select “Save graphics as…” from the context menu. In
any case, a bitmap file is stored, whereas we want it to be PNG. My preferred method is right-click, select
“Copy Graphics” from the context menu, then paste it to an image processing program – I prefer Microsoft
Office Picture Manager for simple tasks like this – and then export it as .png file from there.

SDS1104X-E Review.doc 2018-02-21

 Page 162

The Instrument Control page offers yet another nice option; this is the “SCPI Command” tab in the upper
right corner. With this we get a terminal window and can talk to the instrument via SCPI without the need
for running a terminal program on the computer. Of course this is absolutely basic and mainly serves for
playing around with the scope and trying out various commands. The example below shows the response
to an ALL_STatus? command.

WEB_SCPI_ALL_ST

SDS1104X-E Review.doc 2018-02-21

 Page 163

Segmented Memory
Often sold as an expensive option (or not available at all), this very convenient feature comes for free with
the Siglent X-series scopes. There are two ways to use it: History and Sequence Mode.

First we need to understand how the memory depth setting in the Acquisition menu affects segmented
memory.

X-Series scopes generally use automatic memory depth selection; the current record length (number of
points for a single acquisition) is always determined by the timebase setting and displayed in the top right
corner of the screen. At fast timebases, the record length becomes very short and is only a tiny fraction of
the available acquisition memory. Yet this memory is not wasted, but gets filled with up to 80000 records,
each of them resulting from an individual trigger event.

This is just one of the reasons why there is still a manual memory depth selection in the Acquisition menu
– it can be useful for slow timebase settings, where we might want to limit the record length in order to
increase the number of records that fit into memory, hence can be retrieved in the history later. This is just
one example, why we still need the Mem Depth setting, and in actual fact it just sets a record length limit.

Let’s assume a single channel active at a 1ms/div timebase. With 14Mpts of acquisition memory, we still
maintain a 1GSa/s sample rate and the record length is 14Mpts, so it fills the entire memory. Yet when we
look at the history, we will find two records stored there, so there is actually a total 28Mpts of memory
available. Since this is the same for both channel groups in an SDS1104X-E, we could even claim to have
a total of 56Mpts of memory, but Siglent thankfully does not take the numbers game that far.

Anyway, we currently have just two memory segments and might want more. So we are able to sacrifice
sample rate in favor of an increased number of history records. The table below shows how the record
length limit affects sample rate and number of history frames along with the total memory available for a
single channel at 1ms/div.

Record_Length_Limit_1ms

History
As has been already stated, this is not a special mode, but works silently in the background all the time.
Consequently, history is available whenever we need it.

Let’s examine a 100MHz sine wave once again, which looks rather fuzzy at 500MSa/s when displayed as
vectors with simple x interpolation:

SDS1104X-E Review.doc 2018-02-21

 Page 164

Hist_100MHz_vectors_x_run

We can stop acquisition and enter history mode by pressing the [History] button on the front panel.

Hist_100MHz_vectors_x_80000

Now we can see that 80000 records (frames) have been stored in the history and we can analyze every
single one if we want to. Initially, we’re just seeing the last one, but can scroll through the frames in order
to see the different variations of the misshaped signal caused by the simple x-interpolation.

SDS1104X-E Review.doc 2018-02-21

 Page 165

Hist_100MHz_vectors_x_79999

Hist_100MHz_vectors_x_79998

SDS1104X-E Review.doc 2018-02-21

 Page 166

Hist_100MHz_vectors_x_79997

We can also playback the history in both directions at an arbitrary frame rate. We do it backwards using
an interval of 1ms (=1000 frames per second) in this example and get the fuzzy trace again:

Hist_100MHz_vectors_x_Playback

Even in history mode, we can switch to sin(x)/x reconstruction and get a clear signal trace again during
playback (in forward direction this time):

SDS1104X-E Review.doc 2018-02-21

 Page 167

Hist_100MHz_vectors_sinx_Playback

Hist_100MHz_vectors_sinx_80000

Of course we can also look at a single acquisition record (frame) when playback is stopped and with the
sin(x)/x reconstruction it looks fine too, as can be seen in the screenshot above.

SDS1104X-E Review.doc 2018-02-21

 Page 168

When viewing the history, we can turn on a list that shows every single record stored in the history,
together with a timestamp and a delta time relative to the previous frame. The timestamp format is
hh:mm:ss.µµµµµµ, where h=hours, m=minutes, s=seconds, µ=microseconds.

Hist_100MHz_vectors_x_list

We normally use the universal select knob for scrolling through the history, which becomes tedious very
quickly with long lists like this. But we have still three options left to speed things up:

1. Push the universal select knob to display a dialog where we can jump to a certain record instantly by

entering the desired frame number.
2. Use the playback function at an appropriate frame rate to emulate a fast forward or rewind like on a

tape recorder.
3. Bring up the Navigation menu by pressing the [Navigate] button on the front panel. When selecting

“History Frame” as the navigation type, we can fast forward or rewind as well, this time at three pre-
defined discrete speeds that are simply selected by pressing the back or forward direction buttons
multiple times.

The real beauty of history is that we can use almost all available tools to analyze any individual frame. In
the following example, there are 150 history frames of a 10MHz square wave. We can pick any frame –
No. 47 for example – and use math functions like FFT and cursor measurements.

We can go even further and enter zoom mode within the history and add automatic measurements – even
though with all these tools active at the same time, the screen looks rather busy.

SDS1104X-E Review.doc 2018-02-21

 Page 169

Hist_Square_10MHz_FFT_Cursors

Hist_Square_10MHz_Zoom_FFT_Cursors_Meas

SDS1104X-E Review.doc 2018-02-21

 Page 170

Sequence Mode
Sequence mode is located in the Acquisition menu and it is different to the ordinary acquisition modes in
that it captures the specified number of segments (=records) as fast as possible and then displays all the
data at once. In normal mode, data is displayed at the screen refresh rate, which is approximately 25Hz at
50ns/div. So we can still see all the acquired data in sequence mode, just at a much slower screen update
(but much higher acquisition) rate.

Let’s have a look at the trigger output of the SDS1104X-E with another DSO (Siglent SDS2304X):

SDS1104X-E_TRIG_Std_50ns

For normal acquisition at 50ns/div timebase the waveform update rate is about 118kWfms/s (yes, this has
been improved with the 7.6.1.20 firmware) and the display is updated every 40.40ms, which corresponds
to a screen update rate of 24.75Hz.

Now let’s have a look at sequence mode. The sweet spot setting is with a timebase of 50ns/div and dots
display, where the waveform update rate is measured as nearly 488k (depending on the input signal, it
can be even slightly faster) and a screen update rate of ~2Hz, which is still quick enough to give a live-
view impression. With other settings, screen refresh can be much slower – and of course it depends on
the number of captured segments, which can be limited in the SEQUENCE menu.

The screenshot below shows the trigger output signal – and it looks odd, because instead of a burst of
trigger pulses we just see a static level change during acquisition. This is because Siglent changed the
trigger pulse width to some 5.67µs, mainly because of their new application note “Triggering multiple
instruments with an Oscilloscope” I guess. Most likely the bench multimeters wouldn’t work with narrow
pulses…

The 2nd screenshot below shows the new situation at 10ns/div, where the trigger rate is only 123kWfms/s
and the individual pulses become visible again. This means, we cannot measure trigger rates
>170kWfms/s with a frequency counter or another DSO anymore, but it is still possible to use the
timestamps in the history for that purpose.

SDS1104X-E Review.doc 2018-02-21

 Page 171

SDS1104X-E_TRIG_SEQ_50ns

SDS1104X-E_TRIG_Pulse

As stated before, screen update can be very slow in many cases. For instance, the maximum of 29140
segments available at 100ns/div takes some 10 seconds to refresh the screen. Yet we don’t miss any
events that have been captured, as will be demonstrated in the next screenshot, showing a 5MHz sine
wave, frequency modulated with a max. deviation of 500kHz by a 400Hz sine:

SDS1104X-E Review.doc 2018-02-21

 Page 172

SDS1104X-E_SEQ_100ns_5M_FM500k400_Display

The screen shows all 29140 acquisitions on top of each other at the same time, so we can see the entire
captured data, even with intensity grading, and might enter history to examine every single record.

Let’s do some blind time calculations for sequence mode. As calculated earlier in this document, the
regular mode has a trigger rate of some 19.1kWfms/s and 97.32% blind time for the settings used in this
scenario.

In sequence mode we get some 363.4k waveforms per second at 100ns/div. With 14 horizontal divisions,
a single waveform equals 1.4µs and 363.4k waveforms are equivalent to a total acquisition time of 363400
x 1.4µs = 508760µs = 508.76ms. For each second, we get 508.76ms worth of actual sample data. This is
equivalent to 50.88% of the total time, resulting in 49.12% blind time. This is vastly better than the 97.32%
we got with regular acquisition.

Even though this might suggest that sequence mode is a great glitch hunting tool, its main purpose is
capturing a high number of infrequent events. In the example above, we could have captured up to 29140
events, each with a maximum duration of 1.4µs, that might occur only once a second. If we tried to
capture that as one single acquisition, we’d need some 30 Tpts (terapoints!) of acquisition memory,
whereas in sequence mode it is just about 40.8Mpts (29140 segments of 1400 points each). This is by the
way just another example where this scope utilizes much more memory than advertised; at 5µs/div it can
be up to 55Mpts and since this is just for one channel group, we could say the SDS1104X-E (which has
two groups) can use up to 110Mpts of total memory in situations like this.

The table below shows the record length, max. segments, the corresponding waveform update rate, blind
time, trigger re-arm time, screen refresh time, sustained waveform update rate and total memory
consumption in sequence mode for timebase settings up to 10µs/div.

SDS1104X-E Review.doc 2018-02-21

 Page 173

Sequence Mode Table 1

The trigger re-arm times particularly in the range 50ns/div to 2µs/div are absolutely impressive.

Note that the blind time becomes pretty much negligible at slower timebases like 1µs/div and above, even
though the waveform update rates might not look all that impressive anymore. Yet they are about as good
as it gets as they start approaching the theoretical maximum for the respective timebase.

Another interesting observation is the screen refresh rate with regard to the number of segments that is
set up for sequence mode capturing. It has been done exemplarily for the 50ns/div timebase, where
screen refresh is fast at the outset. The following table shows the test results. It can be seen, that screen
refresh rates >20Hz are possible with trigger rates close to 500kWfms/s during acquisition. The sustained
waveform update rate though, i.e. including the processing and display time, is still always lower as in
regular mode.

Sequence Mode Table 2

This leads to the intriguing question, how the sustained waveform update rate and total blind time in
sequence mode compares to regular mode in general. Is there a setting where sequence mode can beat
the regular mode just at the expense of a slow screen refresh rate? The following table provides the
answer.

SDS1104X-E Review.doc 2018-02-21

 Page 174

Siglent SDS1104X-E Sustained Trigger Rate and Blind
Time

Standard Sequence Timebase
[s] Wfm/s BT [%] Wfm/s BT [%]

1,00E-9 6,09E+3 99,991% 2,53E+3 99,996%
2,00E-9 9,84E+3 99,972% 3,01E+3 99,992%
5,00E-9 34,22E+3 99,760% 19,23E+3 99,865%

10,00E-9 12,89E+3 99,820% 3,53E+3 99,951%
20,00E-9 13,43E+3 99,624% 3,60E+3 99,899%
50,00E-9 107,69E+3 92,461% 93,67E+3 93,443%

100,00E-9 19,12E+3 97,324% 3,02E+3 99,577%
200,00E-9 13,36E+3 96,259% 1,90E+3 99,469%
500,00E-9 8,88E+3 93,788% 1,03E+3 99,278%

1,00E-6 7,29E+3 89,797% 618,99E+0 99,133%
2,00E-6 5,08E+3 85,770% 447,95E+0 98,746%
5,00E-6 2,28E+3 84,040% 413,16E+0 97,108%

10,00E-6 1,29E+3 81,954% 373,33E+0 94,773%
Sustained Trigger Rate Comparison

And the answer is … no. Except for the sweet spot at 50ns/div, where it comes pretty close, the sustained
waveform update rate as well as the total blind time of sequence mode cannot compete with regular mode
by quite a margin. Consequentially, sequence mode is not the ultimate glitch hunting tool for rare and
completely random events, but is excellent for collecting infrequent events over a long time – which might
include glitches. Consider a serial message, 100µs long, sent only once every second, that gets corrupted
occasionally. Then we can trigger on the start of that message, use a 10µs/div timebase to capture a total
of 140µs and will be able to capture up to 392 messages. When the error occurs we just stop the
acquisition and inspect the history – and we need not even hurry, as we get plenty time and just need to
stop the acquisition within some 6 minutes so the glitch event will not be overwritten. In this scenario, the
scope will use close to 55Mpts of memory per channel group.

