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Advanced Functions 
Math 
The math functions (other than FFT) are not exactly a strong point of the SDS1104X-E. They are pretty 
basic and I have to admit that I personally only use a few of them: Add, Subtract, Multiply, Integral and 
FFT. Other than that, I don’t consider single operator math functions particularly useful, no matter how 
many of them were available. 
 
Whenever I have a need for math channels, then I might use more than one of them at the same time, 
want to be able to enter complex formulas and expect heavy support through a comprehensive library of 
math functions. None of these is available in the SDS1104X-E and this situation is not helped by the 
rather loveless implementation of most math operators, which often yields rather ugly, grainy and noisy 
results.  
 

Add & Subtract 
This is something even old analog scopes could do. In fact, it was only Add and a subtraction was 
accomplished by inverting the 2nd channel. There was also no dedicated math channel but the original 
traces were simply replaced by the sum of the two input channels. 
 
Like most other DSOs, the Siglent SDS1104X-E has a dedicated math channel that is displayed together 
with the original input channels. The math channel has a white trace which doesn’t look particularly pretty, 
as it is fat and grainy in most situations. 
 
First is the sum of channels 2 + 3. 
Second is the sum of channels 2 + inverted 3, to mimic the subtraction on an analog scope. 
Third is the difference of channels 2 – 3, which should give the exact same result – and it certainly does. 
 

 
SDS1104X-E_Add 
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SDS1104X-E_Add_InvB 
 
 

 
SDS1104X-E_Sub 
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Multiply & Divide 
This could be used for signal gating as well as generating sum and difference frequencies – or producing 
a sinusoidal waveform out of two triangles, as in the example below. 
 

 
SDS1104X-E_Mul 
 

 
SDS1104X-E_Div 
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The division as shown above looks reasonably nice and at least the scope is not thrown off track when the 
denominator becomes zero.  

Integral 
 

 
SDS1104X-E_Int 
 
The integral function shown in the example above works very well by attenuating the harmonics of the 
triangle wave and thus turning it into a sinusoidal waveform. 
 
The integral function is somewhat special in that it has an implicit gate function to calculate a definite 
integral. This can be used to display the output of a PWM signal. 
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Integrate_1ms_persistence_10s 
 
In the example above, a PWM signal has been swept between 0 and 100% duty cycle and the gate for the 
integration has been defined for the PWM period. 10s persistence has been used in an attempt to 
visualize the dynamic signal in a static screenshot, which has been taken just before the 100% duty cycle 
had been reached. The white trace can be interpreted as the output voltage as a function of the duty 
cycle. The yellow lines are just previous math traces still visible because of the persistence. 
 

Differential 
This is a particularly cumbersome math function that just cannot work well on an 8 bit system. It has a 
parameter dx, which determines the interval used for the difference computation. For an accurate and 
detailed result, we would want dx to be as small as possible and the lowest value that can be set is 0.02 
div. With this setting, we can get totally useless results, as we will see later. 
 
Why is it so? Let’s do some simple math. 
 
The screen is 800x480 pixels, with 700x400 dedicated to the trace area. Since there are 14 horizontal 
divisions, one division is 700/14 = 50 pixels wide. The lowest dx parameter would thus be 0.02 x 50 = 1, 
which means the difference between two adjacent samples is calculated. This will work well for fast 
transitions, but not for a triangle wave, which is about the worst we can throw at the differentiate function. 
 
For the amplitude, the trace area on the screen shows 200LSB of the ADC, and there are 8 vertical 
divisions, hence we get 200/8 = 25 LSB per division.  
 
Let’s have a look at a triangle (symmetrical ramp) with 4Vpp and 1kHz. A triangle should turn into a 
square when differentiated. One ramp (up or down) takes 500µs or 5 divisions at 100µs/div timebase and 
the amplitude is 4 divisions at 1V/div vertical gain. For a slope of 1 as with the triangle, one horizontal 
pixel (equivalent to dx=0.02) corresponds to half a LSB in vertical direction. This quite obviously cannot 
work and even dx=0.04 means just one LSB per time interval, where we are down in the DNL (differential 
nonlinearity) and noise. So no wonder that low dx parameter settings don’t work with slow ramps. 
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SDS1104X-E_Dif_Ramp_Avg16_2% 
 

 
SDS1104X-E_Dif_Ramp_Avg16_4% 
 
 
Even though the noise gets better with increasing time intervals, the results are still not very usable. With 
the maximum value 0.4 for dx, we get very slow transitions for the resulting rectangle, yet the math trace 
is fat and noisy. 
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SDS1104X-E_Dif_Ramp_Avg16_40% 
 
A square wave with fast transitions on the other hand is a perfect candidate for the differentiate function, 
and particularly so with the lowest possible dx parameter of 0.02. 
 

 
SDS1104X-E_Dif_Square_2% 
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Square Root 
Might be useful to convert some sensor signal, that represents power, back into voltage/current. 
 

 
SDS1104X-E_Sqrt 
 

Poor Men’s Differential Probing  
With analog scopes, we were able to combine two regular (single ended, ground referenced) channels 
into one differential channel. This was done by adding both channels with the 2nd channel inverted, whose 
gain had to be fine tuned in order to give a maximum of common mode rejection. Of course, this solution 
was far from ideal and sensitivity as well as common mode rejection were rather limited, especially at 
higher frequencies, which made it hard to get meaningful results when common mode voltages were high 
compared to the differential signal. 
 
Digital scopes generally seem to have pretty much lost that functionality, even though the preconditions 
appear good at first glance. After all we have a separate math channel that has its own individual gain and 
position, which should be ideal for viewing small signals in presence of large common mode voltages. But 
the problems start already when we attempt to fine-adjust the channel gain in order to cancel out the 
common mode signal as much as possible; this is just not possible. In fact, the math functions completely 
ignore the channel gain settings except for the input attenuator, which just cannot be ignored. This seems 
to be convenient at first, as it makes the math channel somewhat independent from the regular channel 
settings, but makes it impossible to fine-tune the gain in order to get it equal across the channels. 
 
Furthermore, the individual gain for the math channel doesn’t actually help, as it can only be a software 
zoom and an 8-bit resolution is not up to the task, particularly when the math gain is set higher than the 
channel gain. 
 
The screenshot below demonstrates the result of two identical signals fed into channels 1 and 2 at 5V/div 
and a difference math channel is set to a 5 times higher gain at 1V/div. The result is just an approximately 
1 division wide bar. Common mode rejection can be estimated from the amplitude measurements and 
would be 1.2V/20.4V = 0.0588 ~ -24.6dB, which is certainly not sufficient for differential measurements. 
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As a conclusion, poor men’s differential probing doesn’t work with this scope and the same is most likely 
true for the majority of other DSOs as well. For tasks that require floating measurements and/or differential 
probing, there really is no way around getting the appropriate physical probes. 
 

 
SDS1104X-E_PoorMen_Diff_Probing 
 
 

FFT 
Now we’ve finally arrived at one of the highlights of the SDS1kX-E series, the 1Mpts Fast Fourier 
Transform, which turns the scope into some sort of spectrum analyzer. This can be found in the math 
Operator menu, yet it deserves a dedicated chapter simply because it’s almost something like an 
instrument within the instrument. 
 
Thankfully, Siglent have implemented a more spectrum analyzer oriented user interface instead of treating 
the spectrum plot just like an ordinary Y-t signal trace. This means a big plus in terms of usability. 
 
Even though there are basically no automatic measurements, markers or analysis applications, which is in 
contrast to modern spectrum analyzers and higher end DSOs, this does not prevent us from getting all the 
answers we could possibly expect when using an 8-bit DSO for analyzing a signal in the frequency 
domain. We should not forget that there have been times where even dedicated SAs had barely anything 
but a manual marker to determine the approximate frequency at any point of the spectrum – and yet 
engineers got their job done. 
 
Generally speaking, we should not get too obsessed with features and gadgets, but concentrate more on 
the quality of measurements. All the bells and whistles won’t serve us anyway, unless we get low 
distortion and noise, accurate levels, a reasonable high spurious-free dynamic range and adequate 
frequency resolution. These are parameters that really matter for any SA and make the difference 
between a useful tool or just another “me too” feature. 
 
Because of this, the FFT will be evaluated just like the base functionality on any real spectrum analyzer, 
so this is going to be a rather lengthy review. 
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Basic Operation 
This section covers some of the fundamentals of the user interface that need to be understood as a basis 
for the following chapters. 
 
FFT is enabled by pressing the [Math] button on the front panel and then selecting “FFT” from the 
Operator menu. This will show the FFT window with some random settings and hopefully in Split Screen 
mode. If not, go to page 2 of the FFT menu and set this mode there. 
 

 
FFT_first_open 
 

Screen Modes 
This is the very first thing to know; there are three different ways to display the FFT: 
 

 Split Screen 
 Full Screen 
 Exclusive 

 
Split Screen as has been shown in the previous screenshot is most useful for setting up the 
measurement, as it allows the observation of the input signal in the time- and frequency-domain in 
parallel. This is important, because as a general rule we want the signal to nearly fill the screen height in 
order to maximize the dynamic range. On the other hand, we need to avoid clipping of the input signal and 
saturating the ADC by all means, because this will lead to distortions and in turn generate lots of 
unwanted harmonics and spurious signals. Consequently, the previous screenshot shows a proper setup 
of the vertical gain and/or output of the signal source and this has to be observed during setup. 
 
Full Screen could serve the same purpose as split screen, but now both frequency and time domain are 
stacked on top of each other which obscures the grid and its labels and might be distracting in general. 
This is also why I personally don’t like this mode very much and rather use Split Screen whenever I need 
to see the Y-t display. 
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FFT_Mode_Full_Screen 
 
 
Exclusive shows the FFT exclusively and makes the instrument look more like a dedicated spectrum 
analyzer. Use this mode once the measurement is properly set up and the input signal amplitude is more 
or less stationary.  
 

 
FFT_Mode_Exclusive 
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AUTO SET 
This can be found on page 3 of the FFT menu and generally does a lousy job. It sets the center frequency 
according to the strongest signal, thus could be used as a starting point for narrowband signal analysis. 
Other than that, it’s best to stay away from the AUTO SET function and there is no way to avoid setting up 
the instrument manually as described later in this document. 
 

 
FFT_Auto_Set 
 

Units 
This submenu can be found on page 2 of the FFT menu. The units used for amplitude measurements, i.e. 
the labeling for the Y-axis of the grid, are selected here. The same submenu also allows the specification 
of the external load impedance. This is required for the dBm units, which specify a power level instead of 
voltage/current. 
 
For general laboratory use, we would universally have an external 50Ω pass-through terminator, hence a 
50Ω load impedance. The same is true for most RF applications, even though there are exceptions 
especially for the antenna inputs of domestic broadcast receivers. 75Ω is the standard for video signals, 
as well as 600Ω for professional Audio. For Audio in general, the use of dBm is not common but might be 
useful for characterizing the output of power amplifiers, where it comes in handy that the Siglent FFT 
allows us to specify load impedances down to 1Ω. 
 
dBVrms is the relative voltage level expressed in decibel with reference to 1Vrms. This is the right setting 
for (unspecified) high impedance source/load configurations. 
 
Vrms is the absolute voltage, which also means that we get a linear Y-axis that severely limits the 
dynamic range that can be displayed. I really don’t see much use for that. 
 
dBm is the relative power level expressed in decibel with reference to 1mW into the specified load 
impedance. This is the preferred unit for general laboratory use as well as RF applications. 
 
The screenshot below shows how the FFT is set up for dBm units and 50Ω external load. At the same 
time, an external 50Ω pass-through terminator has been fitted for channel 4. 
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FFT_Units 
 

Window 
Another important setting is the window function on page 1 of the FFT menu. 
 

 
FFT_Windows 
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This is roughly equivalent to selecting the properties of the final IF filters in a real SA. Of course, the latter 
do not offer such a choice, apart from the selectable IF bandwidth. But FFT works differently than a swept 
spectrum analyzer; we cannot set the analysis bandwidth directly and the “final IF filter” is just some signal 
processing on a limited set of sample data (record) gathered within a certain time interval, where the 
actual input signal is not zero outside this interval. This causes computation errors and produces artifacts. 
This is why the window function is required to do some pre-conditioning on the sample data and it comes 
down to providing a suitable compromise between bandwidth, amplitude accuracy, filter shape and 
selectivity including leakage (side lobe suppression). The simplest window is the rectangle which has the 
narrowest -3dB bandwidth but very poor properties otherwise. Historically a number of window functions 
exist that provide a better compromise at the expense of an increased -3dB bandwidth. Some window 
functions have been particularly optimized for a certain property and these are also the most beneficial 
ones for practical use – in my book, at least. 
 
The table below gives an overview of the window functions available in the SDS1104X-E. Note that some 
windows have parameters (Hanning in this selection) and I do not know what Siglent has actually 
implemented, so the table can only show a span of properties for the usual range of these parameters. 
Also note that “Bins” refers to what is displayed as “Δf” (frequency step) within the FFT window. 
 
Window -3dB BW 

(Bins) 
Max. Side 
Lobe [dB] 

Side Lobe 
roll-off 
[dB/Oct.] 

Remark 

Rectangle 0.89 -13.2 6 Min. 3dB bandwidth, used for short transients 
Blackman 1.68 -58 18 High side lobe suppression, used for audio 
Hanning 1.20 ~ 1.86 -23 ~ -47 12 ~ 30 Used for audio and vibration measurement 
Hamming 1.30 -41.9 6 Used for speech analysis 
Flattop 2.94 -44 6 Negligible pass band ripple, used in spectrum 

analyzers and for calibration 
 
Many more window functions do exist and I personally would love to have Gaussian and particularly 
Blackman-Harris available, but that’s not really a problem, especially not for an 8-bit system. For the time 
being I have the following recommendation for anyone who just wants to use the FFT right away without 
striving for an university degree in digital signal processing (RBW = Resolution Bandwidth): 
 

 Use Flat-Top whenever best amplitude accuracy is important. RBW ~ 3 x Δf 
 Use Blackman otherwise, especially when a high dynamic range is desired. RBW ~ 1.7 x Δf 

 
The following screenshots show all available window functions in two situations: 
 

1. Sine, 5MHz, 0dBm, displayed at 1kHz/div to show the selectivity and filter shape 
2. Sine, 5MHz, -3dBm and 50% AM with 5kHz, displayed at 5kHz/div  
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SDS1104X-E_FFT_Rectangle 
 
 

 
SDS1104X-E_FFT_Mod_Rectangle 
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SDS1104X-E_FFT_Blackman 
 
 

 
SDS1104X-E_FFT_Mod_Blackman 
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SDS1104X-E_FFT_Hanning 
 
 

 
SDS1104X-E_FFT_Mod_Hanning 
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SDS1104X-E_FFT_Hamming 
 
 

 
SDS1104X-E_FFT_Mod_Hamming 
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SDS1104X-E_FFT_Flattop 
 
 

 
SDS1104X-E_FFT_Mod_Flattop 
 

Display Modes 
Normal mode will reflect any input signal change instantly and completely on the following FFT trace. 
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SDS1104X-E_FFT_Mode_Normal 
 
 
Max-Hold only keeps the long-term maximum values for each frequency bin. 
 

 
SDS1104X-E_FFT_Mode_Peak_Hold 
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Average builds the sliding average over the number of records specified by the Times soft menu item, 
which can be set to any value between 4 and 1024. 
 

 
SDS1104X-E_FFT_Mode_Average16 
 
 

FFT-Bandwidth and RBW 
This is quite different to a real SA. There is no menu for the resolution bandwidth and also no direct 
setting for the FFT-bandwidth, even though we have a soft menu item for the horizontal scale in Hz/div, 
which ultimately specifies the visible span. But this is just for zooming into a longer FFT trace and for best 
speed and lowest RBW we need to make sure that no high zoom factor is required to get the display we 
want. The following rules apply: 
 

 The analysis bandwidth (FFT-BW) is always half the sample rate. 
 The frequency step (∆f) is the sample rate divided by the number of FFT points. 
 The resolution bandwidth (RBW) is the frequency step multiplied with a factor specific for the 

window function in use. 
 The number of FFT points depends on the record length, which in turn increases with slower 

timebase settings, but is ultimately limited by the maximum memory set in the Acquire menu. 
 
The following table shows the FFT bandwidth (column BW) and frequency step (delta frequency, column 
df) for all possible memory depths as specified in the Acquire menu and for timebase settings from 
10ns/div up to 1s/div for both channels within a channel group enabled. Keep in mind that the frequency 
step has to be multiplied by the factor specific for the applied window function in order to know the -3dB 
resolution bandwidth. That factor can be found in the column -3dB BW of the table that summarizes the 
available window functions in the Window section. 
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SDS1104X-E_2CH_FFT_BW_Step 
 
Why did I limit the timebase range to 10ns – 1s? The scope can certainly do a much wider range? The 
lower limit is 10ns/div just because this already means a FFT length of only 64 points in dual channel 
mode. This is about the limit for any useful FFT and there is certainly no advantage whatsoever going any 
lower. It is different for the upper limit and there is basically nothing wrong with timebase settings slower 
than 1s/div. This would allow us to get extremely narrow frequency steps and resolution bandwidths in 
turn. But then, even with just 1s/div, one single acquisition already takes a healthy 14 seconds and 
frequency steps down to some 0.1Hz are obtained. I felt this should cover the vast majority of use cases. 
 
If only one channel in a group is enabled, the max. sample rate as well as memory depth will be doubled. 
During my experiments, I got the impression that this operating mode generates slightly less spurious 
signals. The table for single channel (interleaved) mode is shown below. 
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SDS1104X-E_1CH_FFT_BW_Step 
 
 
IMPORTANT: Please note that these tables are not guaranteed to be entirely correct as they just contain 
calculation results and not collected data from the real scope – it would have been rather time consuming 
to actually try all these combinations on the instrument. The sample rate in the SDS1kX-E might not 
always be in accordance with my calculations, yet most results should be correct and the tables good 
enough for determining the appropriate settings for a certain bandwidth / frequency step combination. 
 
For even greater convenience, I’ve prepared a set of tables that show all appropriate settings for any 
available combination of analysis bandwidth & frequency step. To use these tables, proceed as follows: 
 

1. Look at all table entries that show the desired analysis bandwidth in column BW [Hz]. 
2. Pick the entry with the desired frequency step in column df [Hz]. Note that there are two such 

columns, one for dual channel (individual) and another one for single channel (interleaved) 
configuration. 

3. Use the associated entries for timebase TB [s] and Max. memory depth Mem [Pts] to configure 
the scope accordingly. 

4. The FFT [Pts] entry is there just as additional information about the actual FFT length. 
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SDS1104X-E_FFT_Setup_500MHz 
 

 
SDS1104X-E_FFT_Setup_125-250MHz 
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SDS1104X-E_FFT_Setup_12.5-100MHz 
 

 
SDS1104X-E_FFT_Setup_1.25-10MHz 
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SDS1104X-E_FFT_Setup_125kHz-1MHz 
 

 
SDS1104X-E_FFT_Setup_10-100kHz 
 
As an example, let’s assume we want to perform an analysis in the audio range up to 20kHz, which would 
then be our desired analysis bandwidth. In the last table SDS1104X-E_FFT_Setup_10-100kHz we cannot 
find 20kHz, so we pick the next higher value, that is 25kHz. For this bandwidth, we get a total of five 
choices: three for dual channel configuration with frequency steps of 12.2Hz, 0.763Hz and 0.095Hz as 
well as another two for single channel configuration with frequency steps of 6.1Hz and 0.382Hz. If we use 
the Blackman window (recommended), we have to multiply the frequency step by 1.7 in order to get the 
effective -3dB resolution bandwidth. With single channel configuration, 200ms/div and 140k max. memory 
depth we get a frequency step of 0.3815Hz and the resolution bandwidth will be about 0.65Hz. Acquisition 
time will be 200ms x 14 = 2.8s, hence FFT update rate will be slow no matter how powerful the signal 
processing might be. Dealing with low frequencies and narrow frequency steps just takes its toll, there’s 
no way to get around this. 
 

Setting up an FFT Measurement 
Even from the best FFT implementation, we can only expect good results as long as the scope has been 
set up properly for that specific task. How many so called “reviews” have we seen where FFT has been 
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engaged and then some scope settings have been randomly altered just to get some halfway plausible 
but actually rather meaningless FFT graph, which was then either praised or criticized? Of course we can 
get away with some quick & dirty setup if we just want to get a quick overview, but for optimal speed, 
frequency resolution and dynamic range, we need to put a little more effort into a proper setup, which has 
quite different requirements compared to the usual Y-t view. Below there is a complete checklist how to 
properly set up the DSO for analysis in the frequency domain: 
 

1. Set acquisition mode to normal. Use average only for a good reason and stay away from Eres. 
Avoid Peak Detect under all circumstances and without any exception!  

2. Use edge trigger in auto mode to make sure signal acquisition doesn’t stop even when the signal 
amplitude drops below the trigger sensitivity. FFT doesn’t absolutely require a stable trigger by the 
way, but it certainly doesn’t hurt, especially for narrowband analysis.  

3. Determine the lower bandwidth limit for the FFT analysis. If it is >3Hz, use AC-coupling for the 
input channel to ensure maximum dynamic range even with large DC offsets and/or high input 
sensitivities. 

4. Determine the upper bandwidth limit for the FFT analysis. In order to avoid aliasing artifacts, this 
should not only cover the desired analysis bandwidth, but include the highest expected input 
frequency. In general, it’s best to start with a higher upper bandwidth limit and reduce it only after 
it has been confirmed that there is no significant signal content above the desired final limit. 

5. Choose the frequency step size, which would be about half the required resolution bandwidth. 
6. Find an appropriate set of horizontal timebase and max. memory depth settings by means of the 

tables provided in the FFT-Bandwidth and RBW section earlier in this document and setup the 
scope accordingly. Be aware that the desired resolution bandwidth might not be achievable due to 
the limited choice of sample rates and memory depths and/or the maximum FFT length of 1Mpts. 

7. Engage FFT mode, select the correct source channel and start with Split Screen mode. 
8. Set the vertical gain so that the peak amplitude of the input signal is between ±2 to ±4 divisions. 
9. Set the FFT center frequency to the arithmetic mean between lower and upper bandwidth limit. 
10. Set the FFT frequency scale so that the desired analysis bandwidth is displayed on the screen. 
11. Set the desired level units and make sure the external load impedance matches reality whenever 

working with power levels, i.e. dBm. 
12. Set the reference level and vertical scale so that the FFT amplitude range of interest makes best 

use of the available space. 
13. Setup automatic peak-peak (and maybe RMS) measurement for the input channel, as well as Max 

for the math channel. During frequency domain analysis, especially in Exclusive mode, keep an 
eye on the Vpp measurement for the input channel to make sure no overload occurs.  

14. Select an appropriate window function; refer to the Window section earlier in this document. 
 
Hint: stay in Split Screen mode until the amplitude setup is finished and the levels are reasonably stable, 
then switch to Exclusive mode. By keeping an eye on the peak to peak measurement of the input signal, 
you can still detect an overload condition instantly; the scope indicates that by displaying > instead of = in 
front of the measurement value, e.g. Pk-Pk[4]>796.00mV instead of Pk-Pk[4]=640.00mV. 
 

Looking at IF Signals 
Sometimes we want more resolution bandwidth than a 1Mpts FFT can provide. Assume a professional HF 
communications receiver that has an IF of 81.4MHz, where we want to analyze a 400Hz AM signal within 
the IF signal chain. We could try to do that by setting up a 100MHz analysis bandwidth and using 
maximum FFT length. According to table SDS1104X-E_FFT_Setup_12.5-100MHz this can be done by 
setting the timebase to 500µs/div and max. memory depth to (at least) 1.4Mpts in single channel 
(interleaved) mode. This results in a frequency step of 190.7Hz, which is just too wide for properly 
analyzing sidebands that are only 400Hz away from the carrier. 
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SDS1104X-E_FFT_AM_400Hz_81.4MHz 
 
Even with the rectangle window (which gives the most narrow resolution bandwidth), we don’t get enough 
frequency resolution to distinguish the sidebands from the carrier. We can try something different though: 
 

 
SDS1104X-E_FFT_AM_400Hz_81.4MHz_US 
 
Since an IF signal is bandwidth limited (hence no risk of aliasing), we can downconvert it just by 
undersampling. Any ADC acts as a mixer, thus producing a spectrum of ±n x fi ± m x fs, where fi is the 
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input frequency and fs is the sample clock, whereas n and m are just integers running from 0 to 
(theoretically) infinity. During normal operation, we don’t want to see any mixer products, which is perfectly 
possible as long as the input signal and all its harmonics don’t exceed fs/2 and the output of the ADC has 
a brick-wall filter (then in the digital domain of course) that removes everything above fs/2. But in some 
circumstances, we can make use of a certain high-order mixer product, just as in this example, where the 
effective FFT sample rate is only 2MSa/s, which is obviously much too low for an 81.4MHz signal. 
 
According to the formula given above, we are aiming at the mixer product for -1 x fi + 41 x fs, which is 
 
41 x 2MHz – 1 x 81.4MHz = 82MHz – 81.4MHz = 600kHz; 
 
Now if we set the center frequency to 600kHz, we get the carrier at 81.4MHz and can also clearly see the 
sidebands 400Hz apart from it. 16x Averaging has been used in order to get a clean and stable display. 
 
There are several drawbacks though: 
 

 With this mixing scheme, we get the result in reverse frequency position, i.e. the upper sideband 
appears below the carrier and vice versa. 

 Mixing with the 41st harmonic of the sample clock introduces also 41 times more phase noise and 
jitter and it clearly shows in the FFT plot. Just look at the filter shape of the individual spectral 
lines. 

 Amplitude accuracy is pretty much gone, as a harmonic mixing process cannot be as efficient as 
the fundamental one, hence we get about 4.6dB attenuation. Note that I had to reduce the input 
level by 3dB compared to the first screenshot in order to avoid input overloading, so 3dB of the 
total difference are caused by that and not by the measurement error due to harmonic mixing. 

 
So this is not an ideal application, just some emergency measure to get a result – following the motto “a 
compromised measurement is better than nothing at all …” 
 

Performance Test 
Up to now, we have just explored the possibilities to properly set up an optimal FFT analysis for various 
tasks, but we have not checked the actual performance of the FFT implementation in the SDS1104X-E. 
We can often hear opinions suggesting that the FFT length is the most important factor and if this were 
true, the Siglent SDS1kX-E series with 1Mpts max. FFT length would be hard to beat. Actually, FFT length 
only determines the frequency resolution and noise. Yet for the majority of tasks, like characterizing an 
unknown signal and interference hunting, we don’t really need an extremely high frequency resolution. 
Likewise, for the vast majority of measurements with a DSO, noise isn’t the limiting factor either. 
Consequently, a long FFT is nice to have, but most of the time a high spurious-free dynamic range and 
low harmonic and intermodulation distortions would be much more important. For this, an 8-bit sampling 
system sets tight limits with about 49dB dynamic range, which cannot be changed by increasing the FFT 
length or any other averaging techniques. We can indeed get more than that in certain scenarios and an 
e.g. 70dB dynamic could easily be demonstrated with a special setup, but this is not universally true and 
ironically fails just for the majority of real world applications. So while we should not expect any wonders, 
the FFT in this scope is still a very powerful implementation and very useful tool within the constraints of 
the 8-bit acquisition system. 
 

Amplitude Accuracy 
Analyzing a signal in the frequency domain is about exploring its spectral components with their 
amplitudes and maybe also relative phases. Well, we obviously don’t get any phase information and this is 
quite common in DSO-FFT implementations as well as scalar spectrum analyzers. But we do expect 
decent amplitude accuracy within the dynamic range of the 8-bit system, at least when using the Flattop 
window. For this test, a 50MHz sine from a DDS function generator is fed into channel 4 of the scope via a 
precision step attenuator and this combination is capable of providing a fairly accurate amplitude range of 
more than 120dB. Let’s start with 0dBm using the low noise gain of 100mV/div and an analysis bandwidth 
of 100MHz so we can see all the spurious signals generated by the scope itself. 



SDS1104X-E Review.doc  2018-02-21 

 Page 138 

 
SDS1104X-E_FFT_100mV_Amp_0dBm 
 
The signal strongest spur at 75MHz is -62dBm, hinting on a spurious free dynamic range of ~62dB. 
 

 
SDS1104X-E_FFT_100mV_Amp_-10dBm 
 
With a signal level of -10dBm, the spurious signals at 25 and 75MHz have dropped by nearly 10dB as 
well, which indicates they are directly input signal related. In contrast, the spur at 62MHz is even stronger 
now, so it’s only loosely related to the input signal level. The next screenshot shows a -20dBm signal: 
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SDS1104X-E_FFT_100mV_Amp_-20dBm 
 
The spurs at 25 and 75MHz have dropped even further, while the one at 62MHz remains fairly constant. 
 

 
SDS1104X-E_FFT_100mV_Amp_-30dBm 
 
At -30dBm the spur at 75MHz has completely vanished, but the other two remain at -75dBm. 
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SDS1104X-E_FFT_100mV_Amp_-40dBm 
 
At -40dBm, there are only a couple ADC LSBs used anymore and linearity gets worse. A new maximum is 
reached at 62MHz and several other spurs have emerged. 
 

 
SDS1104X-E_FFT_100mV_Amp_-50dBm 
 
Up to this point, the Max measurement on the FFT has been pretty accurate, but now it catches on the DC 
component and has therefore become meaningless. Other than that, the signal level is displayed as some 
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-48dBm, so we’re starting to lose accuracy as we’re finally approaching the limit of the 8-bit dynamic 
range. 
 

 
SDS1104X-E_FFT_100mV_Amp_-60dBm 
 
At -60dBm, the spectral line for the signal drops dramatically, showing some -73dBm. Even though there 
is no visible noise and only one substantial spur, the range below -50dBm is simply unusable for single 
signal measurements due to the constraints of the 8-bit sampling system. So don’t make the mistake to 
think you have 80dB+ dynamic range, just because the noise floor appears so low and only few spurious 
signals are visible – which by the way comes as no surprise in this scenario, because all harmonics 
related to the 50MHz signal are outside the analysis bandwidth. 
 
One might wonder how low we can go with the amplitude measurements. Up to now, we could 
demonstrate that it works fairly well down to -50dBm, which is just 707µVrms or 2mVpp. This is almost as 
sensitive as most AF or RF Millivolt meters with the added benefit of the selective measurement that 
ignores harmonics as well as most of the noise. But we can do better… 
 
Up to this point we have been using 100mV/div gain throughout this test and could demonstrate accurate 
measurements down below one mV. By increasing the channel gain to 1mV/div there should be a boost in 
sensitivity by 40dB and we can hope to measure signal levels down to -90dBm, equivalent to 7µVrms!  
 
The screenshot below shows the 50MHz signal at -40dBm. Due to the high channel gain, the noise level 
is down below -110dBm, but there are lots of spurious signals, not input signal related, just electrical noise 
and interference from inside the scope itself. The level of this is pretty low and there is certainly no reason 
to complain about spurs below -80dBm (<22µVrms), especially not for a cheap entry level DSO like the 
SDS1104X-E. Yet this ultimately limits the ability to measure unknown weak signals to about 10µVrms 
whereas for known signals like in this test we would be able to go even lower and the proposed -90dBm 
should be realistic. 
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SDS1104X-E_FFT_1mV_Amp_-40dBm 
 

 
SDS1104X-E_FFT_1mV_Amp_-80dBm 
 
At -80dBm as shown above, the automatic Max measurement has become useless again because of the 
DC component, but the spectral line for the signal still shows a pretty good level accuracy. As expected, 
all the spurs remain unchanged as they are all generated internally by the scope itself. 
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SDS1104X-E_FFT_1mV_Amp_-100dBm 
 

 
SDS1104X-E_FFT_500uV_Amp_-110dBm 
 
As can be seen in the screenshots above, we can even measure the level of a known signal at -100dBm, 
that is 2,24µVrms or 6,32µVpp. This is the absolute limit though and the test fails at -110dBm, where the 
magnitude of the displayed spectral line is off by several dB even with the maximum channel gain of 
500µV/div. 
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Harmonic Distortion 
Another common task for frequency domain analysis is measuring the harmonics of a signal. Quite 
obviously, the harmonic distortion generated within the analyzer is a limiting factor for such 
measurements, hence it should be fairly low. Once again we’ll have to face the limitations of an 8-bit 
system and cannot expect any better than about -46dB, which would be equivalent to 0.5% THD. 
 
I’ve checked the harmonic distortion of the SDS1104X-E for several frequencies from 1MHz to 30MHz. Of 
course this test requires a low distortion sine wave, so the quality of the signal source has to be verified 
beforehand. This is done by means of a “proper” SA utilizing its “Harmonic Viewer” application. Below is a 
screenshot exemplarily showing the result for the 5MHz test signal. 
 

 
THD_Ref_5MHz 
 
All the harmonics stay well below -60dBc at that frequency, which should be good enough for 
characterizing an 8-bit system. 
 
Now let’s see how the SDS1104X-E performs. The following screenshots demonstrate the harmonic 
distortion at 2, 5, 10 and 30MHz. Higher frequencies have not been tested, because the important 3rd 
harmonic would be outside the bandwidth of this scope. 1MHz has been tested as well, but the result was 
practically identical to the 2MHz test, so it has been omitted here. 
 
No automatic measurements for the harmonics are available, but tracking cursors on the math trace are a 
near perfect tool to both measure and highlight (in the screenshots) the strongest harmonic. 
 
As can be seen, the strongest harmonic is the 3rd and starting at about -53dBc at 2MHz it slowly degrades 
to -47dBc at 30MHz. All in all this is a fair bit better than expected and hints on a very good ADC linearity, 
i.e. its INL has to be better than 1LSB, even at high frequencies. This test would also reveal any problems 
within the frontend, but there is nothing to complain either. Please note the relatively low level of higher 
order harmonics and spurs! 
 
The conclusion can only be, while this scope certainly isn’t up to the task of characterizing low distortion 
sine waves, high fidelity audio gear or high performance RF circuits, it still performs pretty good for the 
majority of undemanding tasks with less strict requirements. 
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SDS1104X-E_FFT_THD_2MHz 
 

 
SDS1104X-E_FFT_THD_5MHz 
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SDS1104X-E_FFT_THD_10MHz 
 

 
SDS1104X-E_FFT_THD_30MHz 
 
 

Two Tone Test 
The key specification for every spectrum analyzer in terms of practical use for narrowband measurements 
is its 3rd order dynamic range, usually expressed as IIP3 (3rd order Input Intermodulation Intercept point). 
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In short it’s the ability to measure weak signals in presence of strong ones without generating unwanted 
3rd order mixing products, which would appear near the original signals, thus creating a chaotic mix of 
wanted and unwanted (or better: relevant and irrelevant) signals – with the risk of unwanted signals even 
totally obscuring the real ones.  
 
This test uses two input signals at 9 and 11MHz, both at a 0dBm level initially. The 9MHz signal is then 
attenuated step by step in order to check the amplitude accuracy of the measurements. At the same time, 
the 3rd order mixing products at 7 and 13MHz are measured, so the resulting IMD (intermodulation 
distortion) can be estimated. 
 
The screenshots below show the results for 0, -20, -30, -60 and -70dBm.  
 
The 0dBm test would be the classical setup for determining the 3rd order intercept point. The unwanted 
product at 7MHz is weaker at -72dB, but the opposite intermodulation product at 13MHz isn’t strong either 
at only -66dB. This means a 3rd order intermodulation distortion of -66dB at 0dBm input level and the input 
intercept point would thus be a healthy +33dBm for a channel gain of 200mV/div. 
 
At -20dBm, the intermodulation product at 7MHz vanishes (goes below -80dBm), the same is true for the 
13MHz product at -30dBm. That’s fairly decent and when looking at the other spurious signals, we can 
conclude that despite the 8-bit system, we can get at least 60dB dynamic range for narrowband 
applications like this. 
 
We can also measure levels below -50dBc quite accurately, simply because the 2nd signal stays fixed at 
0dBm and serves as a dither for the ADC. As can be seen, measuring -70dBc isn’t a problem at all. Just 
for fun, I’ve added a measurement at -76dBm level, which still works surprisingly well. 
 

 
SDS1104X-E_FFT_IM3_0dBm 
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SDS1104X-E_FFT_IM3_-20dBm 
 

 
SDS1104X-E_FFT_IM3_-30dBm 
 
 



SDS1104X-E Review.doc  2018-02-21 

 Page 149 

 
SDS1104X-E_FFT_IM3_-60dBm 
 

 
SDS1104X-E_FFT_IM3_-70dBm 
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SDS1104X-E_FFT_IM3_-76dBm 
 
 

Application Examples 
In this chapter we’re looking at some more practical examples for using the SDS1104X-E FFT.  
 

Wideband Measurement 
We can plot the frequency response of the SDS1104X-E in the range of 1MHz to 250MHz using its FFT 
and an external signal source that covers the entire frequency range. There are three possibilities: 
 

1. A wideband white noise source would ideally output a continuous spectrum of all frequencies at 
the same time. Unfortunately, such noise sources with a completely flat spectrum up to 250MHz 
aren’t that easy to find and if so, they are certainly anything but cheap. 

2. A pulse generator that outputs extremely narrow pulses with near zero transition time will create a 
discrete spectrum with a spectral line at constant amplitude for every f x n, where f is the repetition 
frequency of the pulse and n is any integer value from 1 to infinity. Once again, such a pulse 
generator is anything but common or cheap – e.g. 3.5ns pulse width and 1ns rise time would only 
be good up to some 30MHz. 

3. A swept sine signal can provide near ideal amplitude accuracy, it just takes quite a while to build 
up the complete frequency response plot. 

 
I’ve tried all three methods (using my limited resources), and unsurprisingly the third one yielded the best 
results by far. A sine wave with 0dBm amplitude, swept from 1MHz to 250MHz within 60 seconds was fed 
into channel 4 of the SDS1104X-E. The FFT has been setup for 250MHz analysis bandwidth, i.e. 2µs/div 
timebase and memory depth limited to 14kpts, yielding a frequency step of 61kHz, which is just perfect for 
this task. 
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SDS1104X-E_FFT_Sweep_1M-250MHz_init 
 

 
SDS1104X-E_FFT_Sweep_1M-250MHz_final 
 
In order to collect all individual measurements, we use the Max-Hold Display mode. The first screenshot 
shows the trace after the first scan (after some 60 seconds), whereas the 2nd screenshot demonstrates 
how a near perfect frequency response graph can be obtained by just waiting several minutes until the 
maxima for all horizontal pixels have been registered. Of course, the same result could be obtained after 
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the initial sweep if it were made much slower, but with the faster sweep we get a quick overview and then 
only need to wait any further if the result actually meets our expectations. 
 

Narrowband Measurement 
We can look at the IF signal of a domestic FM receiver at 10.7MHz, with a 1kHz frequency modulation 
and 50kHz max. deviation. For this we choose an analysis bandwidth of 25MHz – 12.5MHz would be even 
better, but we’d need to enable the 2nd channel in the group (Ch. 3 in this example) since this BW is only 
available in dual channel mode. We want the best possible frequency resolution, so we choose the 
longest FFT with 1048576 points, providing a frequency step of 47.7Hz. This leads us to 2ms/div timebase 
and 1.4Mpts memory depth and we just need to adjust the center frequency to 10.7MHz and set a span of 
200kHz by selecting a horizontal scale of 20kHz/div. 
 

 
SDS1104X-E_FFT_FM_10.7MHz 
 

Signal burried in Noise 
FFT can help to find weak signals completely buried in noise, hence invisible in the time domain. The 
example below shows a -20dBm 11.111MHz signal hidden under a 680mVpp noise floor. In the time 
domain, we can only see the noise and wouldn’t even know about the -20dBm signal. The FFT over the 
full scope bandwidth shows that signal very clearly. 
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SDS1104X-E_Noise100mV_Sig-20dBm_11111kHz 
 

Broadcast 
 

 
SDS1104X-E_FFT_Broadcast 
 
The Screenshot above shows the broadcast signals over a 100MHz bandwidth captured with just a piece 
of wire (about 10m long) as antenna. We can see everything from VLF up to the local VHF radio stations. 
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Mask Testing 
This is usually not a very popular feature – and for a reason; it often comes as an expensive option and 
has the reputation to be a tool exclusively for production tests. The latter might also explain why its 
implementation is agonizingly slow on many scopes, just capable of analyzing a couple of acquisitions per 
second. This might be sufficient for production tests, but makes it almost useless for anything else. 
 
Thankfully, Siglent went a different route as they have understood the potential of a more ambitious 
approach on mask test (Siglent calls it “Pass/Fail”) and it comes as a standard feature for free. The 
implementation on the X-series DSOs works pretty much at the same speed as normal acquisition and the 
maximum fault detection rate is close to the usual trigger rate aka “waveform update speed”. 
Consequently, mask testing can be a very useful tool for glitch hunting and fault finding, yielding a 
reasonably high probability for capturing a rare glitch. With one of the more common ridiculously slow 
implementations, it might take forever until a rare and very brief mask violation finally gets detected. 
 
The table below shows the maximum fault detection rate for a 2MHz input signal at various timebase 
settings from 1ns/div up to 10µs/div. The table also shows the expected detection rate in percent of the 
total number of faults as well as the average time for detecting a glitch that has a repetition rate of 1Hz.  
 

 
SDS1104X-E_Mask_Test_Detection_Rate 
 
As an example, let’s assume a step-up curve where the bottom step is occasionally missing. The signal 
repetition rate is 2MHz and the fault occurs at 20Hz, hence an original fault rate of 1:100000 or 0.001%. 
 
At the sweet spot of 50ns/div we get a max. fault detection rate of 107600 acquisitions per second, hence 
a theoretical probability for capturing the fault of 
 
Fault_detection_rate x timebase x horizontal_divisions = 107600 x 50e-9 x 14 = 0.07532 = 7.532%; 
 
The screenshot below demonstrates this very situation, showing the pass/fail statistics after 177 seconds 
runtime: a total number of 19076721 (19 million!) tests and 267 fault detections. The actual fault rate was 
20Hz, resulting in a total of 20 x 177 = 3540 faults where 267 got detected. 267 / 3540 = 0.0754 = 7.54%; 
Average detection time was 177s / 267 = 0.663s and for 1Hz fault rate this would be 0.663s x 20 = 13.26s. 
So these measurements confirm the theoretical numbers given in the table above very nicely. 
 
Don’t forget to turn display persistence on in order to clearly see where the mask violations have occurred. 
It’s the red traces in the screenshot, indicating that the bottom step gets cropped occasionally. With this 
information, one could easily find an appropriate (e.g. runt) trigger to capture the glitch itself and look for 
related signals that might be causing the fault directly or indirectly. 
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SDS1104X-E_Masktest_50ns_2MHz_20Hz_177s 
 
Another option is enabling the Stop on Fail option on page 2 of the PASS/FAIL menu. This will stop the 
acquisition after the first mask violation has been detected, as shown in the screenshot below. 
 

 
SDS1104X-E_Masktest_50ns_2MHz_20Hz_Stop 
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Another channel is used to monitor a signal that is suspected to be related to the fault and sure enough it 
is, as can be seen in this screenshot already thanks to the display persistence. Now we can disable mask 
test and enter the history: 
 

 
SDS1104X-E_Masktest_50ns_2MHz_20Hz_Hist_Last 
 

 
SDS1104X-E_Masktest_50ns_2MHz_20Hz_Hist 
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The first screenshot shows the last history frame that holds the acquisition with the mask violation. We 
can clearly see that the signal at channel 2 is closely related to this event. Any other history frame just 
shows the normal signal without a fault together with the inactive signal on channel 2 and the 2nd 
screenshot gives an example for this. 
 
You might ask what the advantages of mask testing are compared to just using (infinite) display 
persistence alone. Well, there is a couple… 
 

 We might have less stationary signals that require wider tolerances on the mask setting. With 
such an unstable signal, any violation would be harder to spot with just persistence alone, 
whereas in the mask test, they stick out in red color. 

 Mask test provides some statistics if Msg Display is turned on. By knowing the number of tests 
and faults, we can estimate the fault rate, which might give valuable hints on where to look for the 
culprit. 

 We can set mask test to stop after the first occurrence of a mask violation. This allows the close 
examination of the situation including related signals. 

 
We can calculate the fault rate by dividing the detected faults by the total number of tests. In this example, 
it would be 267 / 19076721 ~ 14e-6; this is not exactly the true fault rate which would be 20Hz/2MHz = 
10e-6, but certainly close enough to make a guess what other signal might be related to the glitch. We 
would only consider slow signals (or conditions) with a repetition rate <30Hz and could concentrate on 
observing these. Likewise, it could be a problem in our firmware and we would use a GPIO to generate a 
signal that allows us to monitor a critical region in the firmware with the scope and see whether the fault 
consistently occurs when the code in that region is being executed. 
 

Web Server 
For the first time, a Siglent DSO has a built-in web server. It is nothing exciting, and does not show a live 
view of the DSO screen, so it’s by no means a substitute for an USB scope. It just allows remote setup of 
the most common functions and pulling individual screenshots. A nice first shot nevertheless… 
 

 
SDS1104X-E_IP_setting 
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On page 2 of the Utility menu, we can set up the IP configuration. This is totally easy as long as a network 
router with integrated DHCP server is available. All that’s needed is enabling DHCP and waiting a moment 
until the scope has received its individual IP address, see screenshot above. In a simpler network without 
DHCP server, the IP address, Subnet Mask and Gateway have to be set manually – I have tried that as 
well and it works as expected. 
 
On page 4 of the Utility menu a password for web server access can be set. I haven’t bothered to do this, 
as I hate passwords (which I tend to forget) and my local network isn’t accessible from the internet. 
 

 
SDS1104X-E_WEB_Password 
 
 
On the local computer, we just need to open a web browser and type the scope’s IP address into the 
address bar. After hitting [Return] the home screen of our web server appears. 
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WEB_Start 
 
This contains some useful information about the instrument, like model, serial number and firmware 
version. This screen offers access to the LAN configuration as well as the Instrument Control. Let’s have a 
look at LAN Configuration first. 
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WEB_Settings 
 
Nothing fancy here and I assume the screenshot is self-explanatory. 
 
So let’s move on to the actually interesting part, the Instrument Control. 
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WEB_Control 
 
We get an initial snapshot of the DSO screen and can do a screen refresh anytime we want – it just isn’t 
fast; even on a Gbit network, it takes up to 3s to load a new screenshot, at least on my ancient computer. 
 
We can configure the most basic settings, but even for this, not all options are available. For example, we 
cannot choose the interpolation method in the Acquire section and the Display section does not even offer 
Color mode. Likewise, not all trigger types are available. The Vertical section does not provide the 
Deskew and Invert Options. The available Measurements appear to be fairly complete, but here again, the 
options for Gate, Statistics and All Measurements are missing. All in all it’s a really basic control 
application that doesn’t support any of the more advanced features of the SDS1104X-E. I’m not sure if it 
really would be sensible to offer much more, as a true remote operation of the scope makes little sense 
without a live view anyway. I look at the web server more as a demonstration tool to play with remote 
commands and the most common tasks would be getting screenshots from the scope without the need for 
an USB flash-drive. 
 
Screenshots can be saved by clicking Save Screen and then a bitmap file is stored in the web browser’s 
default download directory. Alternatively, the usual methods for getting an image from a website can be 
applied, like right-click on the screen image and select “Save graphics as…” from the context menu. In 
any case, a bitmap file is stored, whereas we want it to be PNG. My preferred method is right-click, select 
“Copy Graphics” from the context menu, then paste it to an image processing program – I prefer Microsoft 
Office Picture Manager for simple tasks like this – and then export it as .png file from there. 
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The Instrument Control page offers yet another nice option; this is the “SCPI Command” tab in the upper 
right corner. With this we get a terminal window and can talk to the instrument via SCPI without the need 
for running a terminal program on the computer. Of course this is absolutely basic and mainly serves for 
playing around with the scope and trying out various commands. The example below shows the response 
to an ALL_STatus? command. 
  

 
WEB_SCPI_ALL_ST 
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Segmented Memory 
Often sold as an expensive option (or not available at all), this very convenient feature comes for free with 
the Siglent X-series scopes. There are two ways to use it: History and Sequence Mode. 
 
First we need to understand how the memory depth setting in the Acquisition menu affects segmented 
memory. 
 
X-Series scopes generally use automatic memory depth selection; the current record length (number of 
points for a single acquisition) is always determined by the timebase setting and displayed in the top right 
corner of the screen. At fast timebases, the record length becomes very short and is only a tiny fraction of 
the available acquisition memory. Yet this memory is not wasted, but gets filled with up to 80000 records, 
each of them resulting from an individual trigger event. 
 
This is just one of the reasons why there is still a manual memory depth selection in the Acquisition menu 
– it can be useful for slow timebase settings, where we might want to limit the record length in order to 
increase the number of records that fit into memory, hence can be retrieved in the history later. This is just 
one example, why we still need the Mem Depth setting, and in actual fact it just sets a record length limit. 
 
Let’s assume a single channel active at a 1ms/div timebase. With 14Mpts of acquisition memory, we still 
maintain a 1GSa/s sample rate and the record length is 14Mpts, so it fills the entire memory. Yet when we 
look at the history, we will find two records stored there, so there is actually a total 28Mpts of memory 
available. Since this is the same for both channel groups in an SDS1104X-E, we could even claim to have 
a total of 56Mpts of memory, but Siglent thankfully does not take the numbers game that far. 
 
Anyway, we currently have just two memory segments and might want more. So we are able to sacrifice 
sample rate in favor of an increased number of history records. The table below shows how the record 
length limit affects sample rate and number of history frames along with the total memory available for a 
single channel at 1ms/div. 
 

 
Record_Length_Limit_1ms 
 

History 
As has been already stated, this is not a special mode, but works silently in the background all the time. 
Consequently, history is available whenever we need it. 
 
Let’s examine a 100MHz sine wave once again, which looks rather fuzzy at 500MSa/s when displayed as 
vectors with simple x interpolation: 
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Hist_100MHz_vectors_x_run 
 
We can stop acquisition and enter history mode by pressing the [History] button on the front panel. 
 

 
Hist_100MHz_vectors_x_80000 
 
Now we can see that 80000 records (frames) have been stored in the history and we can analyze every 
single one if we want to. Initially, we’re just seeing the last one, but can scroll through the frames in order 
to see the different variations of the misshaped signal caused by the simple x-interpolation. 
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Hist_100MHz_vectors_x_79999 
 

 
Hist_100MHz_vectors_x_79998 
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Hist_100MHz_vectors_x_79997 
 
We can also playback the history in both directions at an arbitrary frame rate. We do it backwards using 
an interval of 1ms (=1000 frames per second) in this example and get the fuzzy trace again: 
 

 
Hist_100MHz_vectors_x_Playback 
 
Even in history mode, we can switch to sin(x)/x reconstruction and get a clear signal trace again during 
playback (in forward direction this time): 
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Hist_100MHz_vectors_sinx_Playback 
 

 
Hist_100MHz_vectors_sinx_80000 
 
Of course we can also look at a single acquisition record (frame) when playback is stopped and with the 
sin(x)/x reconstruction it looks fine too, as can be seen in the screenshot above. 
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When viewing the history, we can turn on a list that shows every single record stored in the history, 
together with a timestamp and a delta time relative to the previous frame. The timestamp format is 
hh:mm:ss.µµµµµµ, where h=hours, m=minutes, s=seconds, µ=microseconds. 
 

 
Hist_100MHz_vectors_x_list 
 
We normally use the universal select knob for scrolling through the history, which becomes tedious very 
quickly with long lists like this. But we have still three options left to speed things up: 
 
1. Push the universal select knob to display a dialog where we can jump to a certain record instantly by 

entering the desired frame number. 
2. Use the playback function at an appropriate frame rate to emulate a fast forward or rewind like on a 

tape recorder. 
3. Bring up the Navigation menu by pressing the [Navigate] button on the front panel. When selecting 

“History Frame” as the navigation type, we can fast forward or rewind as well, this time at three pre-
defined discrete speeds that are simply selected by pressing the back or forward direction buttons 
multiple times. 

 
 
The real beauty of history is that we can use almost all available tools to analyze any individual frame. In 
the following example, there are 150 history frames of a 10MHz square wave. We can pick any frame – 
No. 47 for example – and use math functions like FFT and cursor measurements. 
 
We can go even further and enter zoom mode within the history and add automatic measurements – even 
though with all these tools active at the same time, the screen looks rather busy. 
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Hist_Square_10MHz_FFT_Cursors 
 
 

 
Hist_Square_10MHz_Zoom_FFT_Cursors_Meas 
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Sequence Mode 
Sequence mode is located in the Acquisition menu and it is different to the ordinary acquisition modes in 
that it captures the specified number of segments (=records) as fast as possible and then displays all the 
data at once. In normal mode, data is displayed at the screen refresh rate, which is approximately 25Hz at 
50ns/div. So we can still see all the acquired data in sequence mode, just at a much slower screen update 
(but much higher acquisition) rate. 
 
Let’s have a look at the trigger output of the SDS1104X-E with another DSO (Siglent SDS2304X): 
 

 
SDS1104X-E_TRIG_Std_50ns 
 
For normal acquisition at 50ns/div timebase the waveform update rate is about 118kWfms/s (yes, this has 
been improved with the 7.6.1.20 firmware) and the display is updated every 40.40ms, which corresponds 
to a screen update rate of 24.75Hz. 
 
Now let’s have a look at sequence mode. The sweet spot setting is with a timebase of 50ns/div and dots 
display, where the waveform update rate is measured as nearly 488k (depending on the input signal, it 
can be even slightly faster) and a screen update rate of ~2Hz, which is still quick enough to give a live-
view impression. With other settings, screen refresh can be much slower – and of course it depends on 
the number of captured segments, which can be limited in the SEQUENCE menu. 
 
The screenshot below shows the trigger output signal – and it looks odd, because instead of a burst of 
trigger pulses we just see a static level change during acquisition. This is because Siglent changed the 
trigger pulse width to some 5.67µs, mainly because of their new application note “Triggering multiple 
instruments with an Oscilloscope” I guess. Most likely the bench multimeters wouldn’t work with narrow 
pulses… 
 
The 2nd screenshot below shows the new situation at 10ns/div, where the trigger rate is only 123kWfms/s 
and the individual pulses become visible again. This means, we cannot measure trigger rates 
>170kWfms/s with a frequency counter or another DSO anymore, but it is still possible to use the 
timestamps in the history for that purpose. 
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SDS1104X-E_TRIG_SEQ_50ns 
 

 
SDS1104X-E_TRIG_Pulse 
 
 
As stated before, screen update can be very slow in many cases. For instance, the maximum of 29140 
segments available at 100ns/div takes some 10 seconds to refresh the screen. Yet we don’t miss any 
events that have been captured, as will be demonstrated in the next screenshot, showing a 5MHz sine 
wave, frequency modulated with a max. deviation of 500kHz by a 400Hz sine:  
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SDS1104X-E_SEQ_100ns_5M_FM500k400_Display 
 
The screen shows all 29140 acquisitions on top of each other at the same time, so we can see the entire 
captured data, even with intensity grading, and might enter history to examine every single record. 
 
Let’s do some blind time calculations for sequence mode. As calculated earlier in this document, the 
regular mode has a trigger rate of some 19.1kWfms/s and 97.32% blind time for the settings used in this 
scenario.  
 
In sequence mode we get some 363.4k waveforms per second at 100ns/div. With 14 horizontal divisions, 
a single waveform equals 1.4µs and 363.4k waveforms are equivalent to a total acquisition time of 363400 
x 1.4µs = 508760µs = 508.76ms. For each second, we get 508.76ms worth of actual sample data. This is 
equivalent to 50.88% of the total time, resulting in 49.12% blind time. This is vastly better than the 97.32% 
we got with regular acquisition. 
 
Even though this might suggest that sequence mode is a great glitch hunting tool, its main purpose is 
capturing a high number of infrequent events. In the example above, we could have captured up to 29140 
events, each with a maximum duration of 1.4µs, that might occur only once a second. If we tried to 
capture that as one single acquisition, we’d need some 30 Tpts (terapoints!) of acquisition memory, 
whereas in sequence mode it is just about 40.8Mpts (29140 segments of 1400 points each). This is by the 
way just another example where this scope utilizes much more memory than advertised; at 5µs/div it can 
be up to 55Mpts and since this is just for one channel group, we could say the SDS1104X-E (which has 
two groups) can use up to 110Mpts of total memory in situations like this. 
 
The table below shows the record length, max. segments, the corresponding waveform update rate, blind 
time, trigger re-arm time, screen refresh time, sustained waveform update rate and total memory 
consumption in sequence mode for timebase settings up to 10µs/div. 
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Sequence Mode Table 1 
 
The trigger re-arm times particularly in the range 50ns/div to 2µs/div are absolutely impressive. 
 
Note that the blind time becomes pretty much negligible at slower timebases like 1µs/div and above, even 
though the waveform update rates might not look all that impressive anymore. Yet they are about as good 
as it gets as they start approaching the theoretical maximum for the respective timebase. 
 
Another interesting observation is the screen refresh rate with regard to the number of segments that is 
set up for sequence mode capturing. It has been done exemplarily for the 50ns/div timebase, where 
screen refresh is fast at the outset. The following table shows the test results. It can be seen, that screen 
refresh rates >20Hz are possible with trigger rates close to 500kWfms/s during acquisition. The sustained 
waveform update rate though, i.e. including the processing and display time, is still always lower as in 
regular mode. 
 

 
Sequence Mode Table 2 
 
This leads to the intriguing question, how the sustained waveform update rate and total blind time in 
sequence mode compares to regular mode in general. Is there a setting where sequence mode can beat 
the regular mode just at the expense of a slow screen refresh rate? The following table provides the 
answer. 
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Siglent SDS1104X-E Sustained Trigger Rate and Blind 
Time 

Standard Sequence Timebase 
[s] Wfm/s BT [%] Wfm/s BT [%] 

1,00E-9 6,09E+3 99,991% 2,53E+3 99,996% 
2,00E-9 9,84E+3 99,972% 3,01E+3 99,992% 
5,00E-9 34,22E+3 99,760% 19,23E+3 99,865% 

10,00E-9 12,89E+3 99,820% 3,53E+3 99,951% 
20,00E-9 13,43E+3 99,624% 3,60E+3 99,899% 
50,00E-9 107,69E+3 92,461% 93,67E+3 93,443% 

100,00E-9 19,12E+3 97,324% 3,02E+3 99,577% 
200,00E-9 13,36E+3 96,259% 1,90E+3 99,469% 
500,00E-9 8,88E+3 93,788% 1,03E+3 99,278% 

1,00E-6 7,29E+3 89,797% 618,99E+0 99,133% 
2,00E-6 5,08E+3 85,770% 447,95E+0 98,746% 
5,00E-6 2,28E+3 84,040% 413,16E+0 97,108% 

10,00E-6 1,29E+3 81,954% 373,33E+0 94,773% 
Sustained Trigger Rate Comparison 
 
And the answer is … no. Except for the sweet spot at 50ns/div, where it comes pretty close, the sustained 
waveform update rate as well as the total blind time of sequence mode cannot compete with regular mode 
by quite a margin. Consequentially, sequence mode is not the ultimate glitch hunting tool for rare and 
completely random events, but is excellent for collecting infrequent events over a long time – which might 
include glitches. Consider a serial message, 100µs long, sent only once every second, that gets corrupted 
occasionally. Then we can trigger on the start of that message, use a 10µs/div timebase to capture a total 
of 140µs and will be able to capture up to 392 messages. When the error occurs we just stop the 
acquisition and inspect the history – and we need not even hurry, as we get plenty time and just need to 
stop the acquisition within some 6 minutes so the glitch event will not be overwritten. In this scenario, the 
scope will use close to 55Mpts of memory per channel group. 
 


