
Product : Nemeus Gateway Quick user Guide

Doc : User Manual

Reference :

History : V1.2

2

Table of contents
Table of contents ... 2

Disclaimer .. 4

Document history .. 5

References ... 5

Revisions .. 5

1. Product overview... 6

1.1 Product overview ... 6

1.2 Applications ... 6

2. Gateway I/O and mechanical description ... 7

2.1 Identification ... 7

2.2 HW Interfaces .. 7

2.3 Network Interfaces .. 8

2.4 Tools ... 8

3. Configuration tool .. 8

3.1 Prerequisite ... 8

3.2 Installation / Execution .. 8

3.3 Logs .. 8

3.4 Master window .. 9

3.5 Action Windows .. 10

3.6 Configuration Folders .. 12

3.6.1 DHCP Parameters .. 12

3.6.2 SNTPParameters .. 13

3.6.3 SNET Parameters ... 13

3.6.4 FWD Parameters .. 13

3.6.5 MAC Parameters .. 13

3.6.6 RADIO Parameters ... 14

3.6.7 RX FILTER Parameters .. 15

3.6.8 UPDATE Parameters ... 15

3.7 Device management .. 15

3.7.1 Main device window ... 16

3.7.1.1 Main device window action... 16

3.7.1.1.1 Top window action .. 16

3.7.1.1.2 Contextual menu ... 16

3.7.1.1.3 Context action button .. 17

3

3.7.1.2 Add/Set device window ... 17

3.7.1.2.1 Button action ... 17

3.7.1.2.2 Yaml file ... 18

3.7.1.3 Device context window ... 20

3.8 Installation / Running .. 21

4. Interface with Data server ... 21

5. Packet forwarder ... 22

4

Disclaimer

1. This document is provided for reference purposes only so that Nemeus customers may select the appropriate

products for their use. Nemeus neither makes warranties or representation with respect to the accuracy or

completeness of the information contained in this document, nor grants any license to any intellectual

property rights or any other rights of Nemeus or any third party with respect to the information in this

document.

2. You should not use the products or the technology described in this document for the purpose of military

applications such as the development of weapons of mass destruction or for the purpose of any other

military use. When exporting the products or technology described herein, you should follow the applicable

export control laws and regulations, and procedures required by such laws and regulations.

3. All information included in this document such as product data, diagrams, charts, programs, algorithms, and

application circuit examples, is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Nemeus products listed in this

document, please confirm the latest product information with Nemeus company.

4. Nemeus has used reasonable care in compiling the information included in this document, but Nemeus

assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information

included in this document.

5. When using or otherwise relying on the information in this document, you should evaluate the information

in light of the total system before deciding about the applicability of such information to the intended

application. Nemeus makes no representations, warranties or guaranties regarding the suitability of its

products for any particular application and specifically disclaims any liability arising out of the application

and use of the information in this document or Nemeus products.

6. Nemeus products are not designed, manufactured or tested for applications or otherwise in systems the

failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or

which require especially high quality and reliability such as safety systems, or equipment or systems for

transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or

undersea communication transmission. Use of Nemeus products for such application is under customer

responsibility.

7. You should use the products described herein within the range specified by Nemeus, especially with respect

to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation

characteristics, installation and other product characteristics. Nemeus shall have no liability for malfunctions

or damages arising out of the use of Nemeus products beyond such specified ranges.

8. In case Nemeus products listed in this document are detached from the products to which the Nemeus

products are attached or affixed, the risk of accident such as swallowing by infants and small children is very

high. You should implement safety measures so that Nemeus products may not be easily detached from

your products. Nemeus shall have no liability for damages arising out of such detachment.

9. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written

approval from Nemeus.

10. Please contact Nemeus company (contact@nemeus.fr) if you have any questions regarding the

information contained in this document.

mailto:contact@nemeus.fr

5

Document history

Version Date Author Comments

V0.1 11/02/16 Alan Kreutz Initial
V0.2 22/02/16 Gilles Ronco Update
V1.1 01/08/16 Gilles Ronco Add LoRa WAN server
V1.2 22/08/16 Alan Kreutz Add information

Table 1 : Document versions

References
[1] Nemeus MG003-L-EU-gateway

[2] LoRaWAN specification v1.0.1

Revisions

This document is dedicated to Nemeus Pico-Gateway.

6

1. Product overview
The MG003-L-EU is a pico-gateway dedicated to long-range indoor communication for low power

wireless devices operating on ISM 868Mhz unlicensed band (European band). With interferers’

robustness and low power consumption, it is a good solution for autonomous gateway.

This gateway implements LoRa & FSK modulations and can be used in two modes :

 Packet forwarder mode

 LoRa WAN 1.0.1 EU server

1.1 Product overview

• Size 75mm x 75mm x 25mm

• Modulation : LoRa™ / FSK

• Maximum output power +26 dBm

• 8 channels Freq/SF solution

• Powered by 5v USB interface

• Communication through Ethernet interface

1.2 Applications

• Automated Meter reading

• Home and Building automation

• Industrial monitoring and control

• IOT (Internet of Things)

7

2. Gateway I/O and mechanical description

2.1 Identification
The gateway Identification is provided on a label on the gateway bottom. Information format is as

follow :

 HW version: MG003-EU-1.1

 HW id: <HW ID>

 MAC address: <aa:bb:cc:dd:ee:ff>

 Default host name: <Nemeus-gw-aabbccddeeff>

 SW: <SW version>

Note that if the hardware version ends with FRAM, the gateway is equipped of a FRAM. After power

down, devices information are kept.

2.2 HW Interfaces
The gateway has following interfaces :

 A micro-USB connector which is used to power the gateway. The consumption of the gateway

is compliant with USB power constraints and can be connected to a computer or a plug. This

connector is not usable to control or configure the gateway.

 A RJ45 connector used to connect the gateway directly to a LAN. This interface is used for the

Ethernet communication of the gateway with an external server (LoRa WAN 1.0.1 EU server in

case of the gateway is used in Packet mode or Applicative server in case of use of LoRa WAN

1.0.1 EU embedded network server). This interface is also used for a remote configuration and

control of the gateway through a LAN with a JAVA application.

 A SMA connector to plus the antenna. The gateway must not be powered without antenna

to avoid electronic damage.

 A LED indicator giving a status on the current state of the gateway :

o Blue (at power-ON) : Waiting dynamic IP address from a DCHP server (Dynamic mode)

o Green : IDLE mode / Connected external server / no processing ongoing

o Blue : Processing ongoing (DL frame emission to device) OR Ethernet disconnection

RJ45 connector

Ethernet interface
Micro-USB connector (Power)

(5v power supply)

Led indicator

SMA connector

8

o Red : Tx issue / Conflict on Tx transmission for several devices

2.3 Network Interfaces
The Ethernet communication is based on UDP protocol. The UL/DL communication with external server

(Applicative server in case of LoRa WAN 1.0.1 embedded server or external LoRa WAN server in case

of packet server mode) is done through JSON. JSON format description is provided at the end of this

document.

2.4 Tools
The gateway is provided with a JAVA application used to configure it through a LAN network.

3. Configuration tool

3.1 Prerequisite
Nemeus Java application to control the gateway requests that the JAVA Runtime Evaluation 8 kit is

installed onto the computer. This one can be found on

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html)

3.2 Installation / Execution
Nemeus JAVA Application is made of only one file : o_NemeusCustomerGateway.jar. This one can be

put in any folder.

To execute the JAVA application, the following command must be executed in a Command DOS

windows in the folder in which the file is available.

 java -jar o_NemeusCustomerGateway.jar

3.3 Logs
During execution, the JAVA application records information in a log file which is created in same folder

of the .jar file at the time this one is started. The generated log file stays the same during all the JAVa

application execution. The file format is log-mgw-<xxxxx> where xxxx corresponds to the date and time

of the JAVA application start.

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

9

3.4 Master window
The following figure gives an overview of the JAVA application.

This one is based on 5 sub-windows:

 Sub-window 1 : The application title and the version of application

 Sub-window 2 : The Action window

 Sub-window 3 : The configuration folder

 Sub-window 4 : The configuration parameters

 Sub-window 5 : The devices configuration (LoRa WAN server configuration)

10

3.5 Action Windows

The following figure shows the Action window and the different

control available.

USB/Socket(UDP) parameters :

By default the configuration of the gateway is done through the LAN.

As option and for debug purpose the gateway can be

configured/controlled through a Custom I/F inside the enclosure

(called USB). This interface is not dedicated to be used by Customers.

The Socket(UDP) must be always activated.

GW IP @ or Hostname parameters:

These two parameters are exclusives and correspond to two ways to

identify the gateway on the LAN. The Hostname parameter can be

used to connect to the gateway through its hostname <Nemeus-gw-

aabbccddeeff>. This solution is only possible if a DHCP server is

reachable to resolve the name (preferred solution). The GW IP @ is

used in case there is no DHCP server available. In such a case the IP

@ must previously forced on the gateway through a LAN having

DHCP server available. (This mode is only for LAN without DHCP

server)

Connect button :

As soon as the Gateway Hostname or GW IP has been set, the

“Connect” button is used to create a socket between the JAVA

application and the Gateway. Notice : The Gateway must

disconnected before closing the JAVA application or trying to

connect to another gateway.

Reset gateway :

As soon as the gateway is connected to the JAVA application, the Gateway can be reset through the

“Reset Gateway” button. This action is needed in order that the gateway takes into account the new

configuration written in the filesystem of the gateway.

Factory Reset :

Reset the gateway and recover the factory settings. This action deletes all user configuration and

could be used to recover a stable state.

Configuration action:

The action “Check config”, “Save”, “Load”, “Read”, “Write” deals about the gateway parameters

displayed on the application. Gateway configuration is stored on the gateway filesystem. It could be

read from & write to the gateway file system to view or change the gateway parameters. The

application allows to save to a .cfg file or load a .cfg file.

Check Config: Check the configuration set in the application view and check if the format is

correct.

11

Save: Save gateway configuration displayed in application in a .cfg file on the computer. The

configuration is stored in binary format.

Load: Load gateway configuration from a .cfg file. The application checks the file content. If

the configuration is correct, the parameters are set in the application view.

Read: send an action to read the gateway configuration file and display parameters in

application view if the format is correct.

Write: send an action to write the gateway configuration file.

Verbose:

This action simply enable(ON)/disable(OFF) the verbose trace on java console. This is helpful in case

of DEBUG.

Flash firmware:

As soon as the gateway is connected to the JAVA application, the Gateway can be flashed with a new

firmware through the “Flash firmware” button.

You have to select a binary file provided by Nemeus company. This binary file contains the new

firmware to flash with CRC. During the flash firmware, you could see a progress indicator window. Do

not turn off power of gateway. Do not unplug the USB cable or ethernet cable. The flash firmware

action is done by sending binary segment on USB or UDP interface.

After flash update success, the gateway reset. You must wait a few minutes during filesystem

creation. It is important to not stop the proccess in order to have a correct filesystem.

Device list:

As soon as the gateway is connected to the JAVA application, the Gateway, configured as LoRaWAN

server, can manage the associated devices through the “Device List” button.

12

3.6 Configuration Folders

8 configuration folders are available. Each one is selected through the corresponding button

on right side:

 DHCP folder : DHCP configuration and parameters

 SNTP folder : Simple Network Time Protocol configuration

 SNET folder : Data & Secu Server connection parameters

 MAC folder: MAC parameters. This tab is displayed only if gateway is in LoraWAN

router mode.

 FWD folder: Packet Forwarder parameters. This tab is displayed only if gateway is in

packet forwarder mode.

 RADIO folder: LoRa/FsK Radio(s) configuration

 RX FILTER folder : Rx Frame Filter

 UPDATE folder : Gateway information

These folders allows to display different parts of gateway configuration. Click on the corre-

sponding button to display the parameters on the center part of application.

3.6.1 DHCP Parameters

The gateway IP address can be selected by two ways:

 Static IP address – Static mode

 Dynamic IP address selection – Dynamic mode

The mode parameter allows to select the configuration between Static or Dynamic.

Source IP@, Subnet Mask, router IP@ and DNS are editable only in static mode

DCHP parameters are following:

 Source MAC @: Nemeus Gateway MAC address (Always Read only parameter)

 Period: DHCP client scheduling (must not be modified)

 Ignore Ping checkbox (to not answer to ICMP)

 Source IP @: Nemeus Gateway IP address

 Subnet Mask: subnet mask in your local network

 Router IP @: IP address of your local network router (internet box...)

 DNS 1 IP @: IP address of DNS 1

 DNS 2 IP @: IP address of DNS 2

13



3.6.2 SNTP Parameters

The SNTP parameters are used to select a SNTP server from which the gateway will pick the

current time periodically to update its internal time base. The SNTP server can be configured

either by SNTP name (SNTP URL) or by IP address. If SNTP name is not empty, the IP ad-

dress can't be edited. The parameters are:

 SNTP server name

 SNTP IP address

 Period : SNTP server polling period in minutes

 Repeat: number of repeat in case of failure

3.6.3 SNET Parameters

The SNET parameters are used to configure the Data server & Security server. The data

server is the Customer server to exchange data from/to the gateway in UL and DL. By default,

the security server is a Nemeus server used for Gateway FW update. The parameters are fol-

lowing :

 Server name or IP address for Data server & Security server

 Server Port communication

 Data Server period : PULL DATA periodicity

 Security server period: security key update period

 Security Key: Original security key for ciphering

3.6.4 FWD Parameters

DO NOT TOUCH these parameters

 Downlink Frequency: Force the downlink frequency to use (keep 0)

 Downlink Timestamp offset: timestamp server offset to add (keep current value)

 Downlink SF: Force downlink Spreading Factor (keep 0)

 Stat Period: Statistic period sent to data server (for debug purpose / Do not touch)

 Gateway EUI: Unique ID for gateway. This ID is contained in the frames sent by gate-

way. By default, this is based on the MAC address.

3.6.5 MAC Parameters
 Network ID: Network identifier

14

 Router port: LoRaWAN port used by Chat application

 Rx packet mode: Uplink frame destination.

o Local mode means the uplink frame is forwarded to Java application

o Remote mode means the uplink frame is forwarded to data server

 Rx packet format for local mode: Format of uplink data frame forwarded to Java application

(local mode): JSON, BASE64 in AT unsol, hexadecimal format in AT unsol.

3.6.6 RADIO Parameters

These parameters are used to configure the Rx mode of the 8 transceivers. Each transceiver

can be enabled/disabled by Mask parameter (in hexadecimal). FF means 8 SX to use.

Mode indicates the gateway mode. Simple packet forwarder mode to an external LoRa WAN

server or internal LoRa WAN server mode.

TX ID indicates which transceiver is used for TX transmission from the gateway to the de-

vices. It is not modifiable. This transceiver will switch to Tx as soon as the gateway has to

transmit a frame to a device. During this period, the transceiver is not able to receive any

frame on Rx.

The radio buttons (0 to 7) are used to select a transceiver to configure with Rx parameters.

The parameters below are the radio parameters of this transceiver:

 The RX frequency

 The Bandwidth

 The Preamble length

 The CRC

 The modulation type : LoRa or FSK

For LoRa modulation, the parameters are following:

 Spreading Factor (SF7 to SF12)

 Coding Rate

 Implicit Header (boolean)

 Iq inverted (boolean)

 Synchro word

For FSK modulation, the parameters are following:

 Bandwitdh AFC

 Baudrate

 Fixed lenbgth

 Synchro word length

15

 Synchro word

3.6.7 RX FILTER Parameters

Rx packet filter configures the accepted upcoming packet.

If a packet doesn't match with this rule, the packet is dropped. The parameters are following:

 Offset: byte offset for data checking

 Mask Number: number of masks

 Mask length: mask size in bytes

 Mask: Mask value compared to the Rx Frame at specified offset.

3.6.8 UPDATE Parameters

These parameters give information on FW version and Check period for new version. These

parameters are:

 Version: CRC of file (not editable)

 Period: firmware update checking period

Furthermore, since the Gateway does not have an embedded GPS, a position of gateway can

be introduced manually through following parameters:

 GW latitude,

 GW longitude

 GW altitude

This position is transferred to server.

3.7 Device management
In LoRaWAN server, the java application offers a user interface to manage the devices

registered to the gateway.

Devices are registered in the filesystem. This part presents the user interface to display, read

and write information in device gateway file.

At the bottom of the action window, the “Device List” button displays a new window to

manage devices.

16

3.7.1 Main device window
The device list displays all registered devices with the file index.

When user connects to gateway, the application automatically reads the device file content. If some

devices are registered, the window will display in the device list window.

You will find one line by device. This line is composed of multiple cells with an index (index in

the device file), device EUI, Application key, device type (device option represented in a bit

field), Rx window 2 frequency and an action button to display more about device.

3.7.1.1 Main device window action
Different actions are possible.

3.7.1.1.1 Top window action
Top window button action:

 “Add Device”: open a window to add a new device

 “Get All Devices”: refresh the devices list by asking it to gateway

 “Load Yaml…”: load an external .yaml file to add a list of devices from a yaml format

file

3.7.1.1.2 Contextual menu

A mouse right click on a cell displays a contextual menu:

17

 “Edit Device…”: to edit the device. This display the same window as the “Add Device”

button. The window fields are set with the device value. It allows to see a device type

bit fields representation

 “Delete Device” to delete the device from the gateway

3.7.1.1.3 Context action button
The context action button in a device line displays context parameters from a device.

3.7.1.2 Add/Set device window

3.7.1.2.1 Button action

Using top bottom “Add device” or contextual menu “Edit device…” displays the window:

18

The parameters to configure are:

- Device EUI

- Application Key

- Application Security Key if Force ABP checkbox is checked

- Network Security Key if Force ABP checkbox is checked

- Device Type:

o LoRa WAN class (A or C)

o Frame counter size (counter on 16 or 32 bits)

o Sequence Check

o Rx window 1 Data Rate Offset

o Rx window 2 Data Rate

o Ciphering enable/disable

o Rx window 1 delay

o Max Tx power

o Number of transmission

o Rx window 2 frequency

3.7.1.2.2 Yaml file
To enter multiple devices, it is possible to load a yaml file with the device information.

The file begins with

And ends with:

…

Between every entry, the --- separator must be present

Example:

the device uid between quote (string)

deviceUid: '454545454545'

the application key between quote (string)

appKey: '00000000000000000000000000000000'

Force ABP true/false

abp: true

19

Application SKey if abp is true

appSKey: '00000000000000000000000000000000'

Network SKey if abp is true

nwkSKey: '00000000000000000000000000000000'

Device class. 0 means class A, 2 means class C

deviceClass: 0

Frame counter size. true means 32 bits, false means 16 bits

fcounterSize: true

Sequence check

sequenceCheck: true

Rx1 Data rate offset

rx1DataRateOffset: 0

Rx2 Data Rate according to the lorawan specification

rx2DataRate: 0

ciphering enable or disable

ciphered: true

rx1 Delay

rx1Delay: 1

max Tx power

maxTxPower: 1

Number of transmission

nbTransmission: 1

Rx window 2 frequency in Hz

rxW2Frequency: 869525000

Device Address

deviceAddress: '1212346'

Last dev nonce

lastDevNonce: '0000'

Frame counter Downlink

FCounterDownlink: 0

#Frame counter Uplink

FCounterUplink: 0

device state. 0 UNREGISTERD, 1 REGISTERING, 2 REGISTERED

state: 0

20

number of downlink frames

nbDownlinkFrame: 0

deviceUid: '123456789ABCDEF0'

appKey: '000102030405060708090A0B0C0D0E0F'

abp: false

deviceUid: '123456789ABCDEF1'

appKey: '000102030405060708090A0B0C0D0E0F'

...

3.7.1.3 Device context window
The “Context” action button on each device entry displays a window with device context

information:

The device context is composed of:

- Device Address (not editable)

- Network Security Key (not editable)

21

- Application Security Key (not editable)

- Last Dev Nonce

- Frame Counter Uplink

- Frame Counter Downlink

- Device State (UNREGISTERED, REGISTERING, REGISTERED)

- Number of pending downlink frames

- Pending frames information (payload, port, mode, class). For each pending frames, it

is possible to remove the pending frame from the server.

- Possibility to add a pending frame (payload, port, mode, class)

There are 2 action buttons to get and set the device context.

3.8 Installation / Running

This application must be executed from the console with the following command:

 java -jar NemeusGateway.jar (request JAVA 8 Update 65 minimum version)

Debug information are printed on the console. A log file is also generated in the folder in which the

JAVA is executed.

The verbose “ON/OFF” is used to display on the console and write in the log file the debug information

from JAVA application and gateway.

4. Interface with Data server
The interface with the data server depends on the gateway mode. Currently, Packet Forwarder mode

is described.

22

5. Packet forwarder
The interface used for the packet forwarder is the same as the one defined by Semtech (protocol

version 1).

Git: https://github.com/Lora-net/packet_forwarder

You must use a release inferior to v3.0.0

The last PROTOCOL.TXT file (version 1) is:

PROTOCOL.TXT

See Appendix A.

5.1 LoRaWAN frames description

5.1.1.1 Uplink frames
An example of JSON frame with loraWAN packet:

{"lwpk":

 [{"time":"2016-07-19T10:23:36.000000Z",

 "freq":868.100000,

 "datr":"DR4",

 "rssi":-96,

 "lsnr":7.0,

 "deui":"70B3D53260000000",

 "mode":"UNCONF",

 "dadd":"D629A000",

 "adrb":0,

 "aarb":0,

 "ackb":0,

 "cntu":0,

 "cntd":0,

 "port":2,

 "lmic":"811F1DC6",

 "size":2,

 "data":"yv4="}]}

The associated metadata description:

“freq”: central frequency in MHz

“datr”: LoRa data rate identifier

“rssi”: RSSI in dBm

“lsnr”: LoRa SNR ratio in dB

"deui": device EUI

“mode”: frame mode

https://github.com/Lora-net/packet_forwarder

23

“dadd”: device Address

“adr”: Adaptative Data Rate bit value

“aarb”: ADR ACK Request bit

“ackb”: ACK bit

“cntu”: frame counter uplink

“cntd”: frame counter downlink

“port”: application port

“lmic”: MIC

“size”: packet payload size in bytes

“data”: Base64 encoded packet payload

5.1.1.2 Downlink frames
A downlink frames is added in the device FIFO list. If list is full, the oldest is deleted and the new

frame is added.

{"lwpk":

 {"deui":"70B3D53260000000",

 "mode":"UNCONF",

 "port":2,

 "clas":"A",

 "data":"yv7eyg==",

 "size":4}}

The associated metadata description:

“deui”: device Unique Identifier

“mode”: Acknowledgement mode

“port”: application port

“clas”: frame class

“data”: Base64 encoded packet payload

“size”: packet payload size in bytes

To delete the first FIFO frame:
{"lwpk":

 {"deui":"70B3D53260000000",

 "size":0,

 "frid":0}}

OR
{"lwpk":

 {"deui":"70B3D53260000000",

 "size":0}}

To delete the second frame of FIFO list:

24

{"lwpk":

 {"deui":"70B3D53260000000",

 "size":0,

 "frid":1}}

To delete the third frame of FIFO list:

{"lwpk":

 {"deui":"70B3D53260000000",

 "size":0,

 "frid":2}}

“frid”: frame ID in the FIFO list

25

Annex A.
 ______ _

 / _____) _ | |

 ((____ _____ ____ _| |_ _____ ____| |__

 ____ \| ___ | (_ _) ___ |/ ___) _ \

 _____)) ____| | | || |_| ____((___| | | |

 (______/|_____)_|_|_| __)_____)____)_| |_|

 (C)2013 Semtech-Cycleo

Basic communication protocol between Lora gateway and server

===

1. Introduction

The protocol between the gateway and the server is purposefully very basic and

for demonstration purpose only, or for use on private and reliable networks.

There is no authentication of the gateway or the server, and the acknowledges

are only used for network quality assessment, not to correct UDP datagrams

losses (no retries).

2. System schematic and definitions

 (((Y)))

 |

 |

 + - -|- - - - - - - - - - - - - + xxxxxxxxxxxx +--------+

 | +--+-----------+ +------+ | xx x x xxx | |

 | | | | | | xx Internet xx | |

 | | Concentrator |<--->| Host |<-------xx or xx-------->| |

 | | | SPI | | | xx Intranet xx | Server |

 | +--------------+ +------+ | xxxx x xxxx | |

 | ^ ^ | xxxxxxxx | |

26

 | | PPS +-------+ NMEA | | | |

 | +-----| GPS |-------+ | +--------+

 | | (opt) | |

 | +-------+ |

 | |

 | Gateway |

 +- - - - - - - - - - - - - - - -+

__Concentrator__: radio RX/TX board, based on Semtech multichannel modems

(SX130x), transceivers (SX135x) and/or low-power stand-alone modems (SX127x).

__Host__: embedded computer on which the packet forwarder is run. Drives the

concentrator through a SPI link.

__GPS__: GNSS (GPS, Galileo, GLONASS, etc) receiver with a "1 Pulse Per Second"

output and a serial link to the host to send NMEA frames containing time and

geographical coordinates data. Optional.

__Gateway__: a device composed of at least one radio concentrator, a host, some

network connection to the internet or a private network (Ethernet, 3G, Wifi,

microwave link), and optionally a GPS receiver for synchronization.

__Server__: an abstract computer that will process the RF packets received and

forwarded by the gateway, and issue RF packets in response that the gateway

will have to emit.

It is assumed that the gateway can be behind a NAT or a firewall stopping any

incoming connection.

It is assumed that the server has an static IP address (or an address solvable

through a DNS service) and is able to receive incoming connections on a

specific port.

3. Upstream protocol

3.1. Sequence diagram ###

27

 +---------+ +---------+

 | Gateway | | Server |

 +---------+ +---------+

 | -----------------------------------\ |

 |-| When 1-N RF packets are received | |

 | ------------------------------------ |

 | |

 | PUSH_DATA (token X, GW MAC, JSON payload) |

 |--->|

 | |

 | PUSH_ACK (token X) |

 |<---|

 | ------------------------------\ |

 | | process packets *after* ack |-|

 | ------------------------------- |

 | |

3.2. PUSH_DATA packet ###

That packet type is used by the gateway mainly to forward the RF packets

received, and associated metadata, to the server.

 Bytes | Function

:------:|---

 0 | protocol version = 1

 1-2 | random token

 3 | PUSH_DATA identifier 0x00

 4-11 | Gateway unique identifier (MAC address)

 12-end | JSON object, starting with {, ending with }, see section 4

3.3. PUSH_ACK packet ###

That packet type is used by the server to acknowledge immediately all the

PUSH_DATA packets received.

 Bytes | Function

28

:------:|---

 0 | protocol version = 1

 1-2 | same token as the PUSH_DATA packet to acknowledge

 3 | PUSH_ACK identifier 0x01

4. Upstream JSON data structure

The root object can contain an array named "rxpk":


``` json 

{ 

 "rxpk":[ {...}, ...] 

} 

``` 


That array contains at least one JSON object, each object contain a RF packet

and associated metadata with the following fields:

 Name | Type | Function

:----:|:------:|--

 time | string | UTC time of pkt RX, us precision, ISO 8601 'compact' format

 tmst | number | Internal timestamp of "RX finished" event (32b unsigned)

 freq | number | RX central frequency in MHz (unsigned float, Hz precision)

 chan | number | Concentrator "IF" channel used for RX (unsigned integer)

 rfch | number | Concentrator "RF chain" used for RX (unsigned integer)

 stat | number | CRC status: 1 = OK, -1 = fail, 0 = no CRC

 modu | string | Modulation identifier "LORA" or "FSK"

 datr | string | LoRa datarate identifier (eg. SF12BW500)

 datr | number | FSK datarate (unsigned, in bits per second)

 codr | string | LoRa ECC coding rate identifier

 rssi | number | RSSI in dBm (signed integer, 1 dB precision)

 lsnr | number | Lora SNR ratio in dB (signed float, 0.1 dB precision)

 size | number | RF packet payload size in bytes (unsigned integer)

 data | string | Base64 encoded RF packet payload, padded

29

Example (white-spaces, indentation and newlines added for readability):


``` json 

{"rxpk":[ 

 { 

  "time":"2013-03-31T16:21:17.528002Z", 

  "tmst":3512348611, 

  "chan":2, 

  "rfch":0, 

  "freq":866.349812, 

  "stat":1, 

  "modu":"LORA", 

  "datr":"SF7BW125", 

  "codr":"4/6", 

  "rssi":-35, 

  "lsnr":5.1, 

  "size":32, 

  "data":"-DS4CGaDCdG+48eJNM3Vai-zDpsR71Pn9CPA9uCON84" 

 },{ 

  "time":"2013-03-31T16:21:17.530974Z", 

  "tmst":3512348514, 

  "chan":9, 

  "rfch":1, 

  "freq":869.1, 

  "stat":1, 

  "modu":"FSK", 

  "datr":50000, 

  "rssi":-75, 

  "size":16, 

  "data":"VEVTVF9QQUNLRVRfMTIzNA==" 

 },{ 

  "time":"2013-03-31T16:21:17.532038Z", 

  "tmst":3316387610, 

  "chan":0, 

  "rfch":0, 

  "freq":863.00981, 

  "stat":1, 



30 

  "modu":"LORA", 

  "datr":"SF10BW125", 

  "codr":"4/7", 

  "rssi":-38, 

  "lsnr":5.5, 

  "size":32, 

  "data":"ysgRl452xNLep9S1NTIg2lomKDxUgn3DJ7DE+b00Ass" 

 } 

]} 

``` 


The root object can also contain an object named "stat" :


``` json 

{ 

 "rxpk":[ {...}, ...], 

 "stat":{...} 

} 

``` 


It is possible for a packet to contain no "rxpk" array but a "stat" object.


``` json 

{ 

 "stat":{...} 

} 

``` 


That object contains the status of the gateway, with the following fields:

 Name | Type | Function

:----:|:------:|--

 time | string | UTC 'system' time of the gateway, ISO 8601 'expanded' format

 lati | number | GPS latitude of the gateway in degree (float, N is +)

 long | number | GPS latitude of the gateway in degree (float, E is +)

 alti | number | GPS altitude of the gateway in meter RX (integer)

 rxnb | number | Number of radio packets received (unsigned integer)

31

 rxok | number | Number of radio packets received with a valid PHY CRC

 rxfw | number | Number of radio packets forwarded (unsigned integer)

 ackr | number | Percentage of upstream datagrams that were acknowledged

 dwnb | number | Number of downlink datagrams received (unsigned integer)

 txnb | number | Number of packets emitted (unsigned integer)

Example (white-spaces, indentation and newlines added for readability):


``` json 

{"stat":{ 

 "time":"2014-01-12 08:59:28 GMT", 

 "lati":46.24000, 

 "long":3.25230, 

 "alti":145, 

 "rxnb":2, 

 "rxok":2, 

 "rxfw":2, 

 "ackr":100.0, 

 "dwnb":2, 

 "txnb":2 

}} 

``` 


5. Downstream protocol

5.1. Sequence diagram ###

 +---------+ +---------+

 | Gateway | | Server |

 +---------+ +---------+

 | -----------------------------------\ |

 |-| Every N seconds (keepalive time) | |

 | ------------------------------------ |

 | |

 | PULL_DATA (token Y, MAC@) |

32

 |--->|

 | |

 | PULL_ACK (token Y) |

 |<---|

 | |

 +---------+ +---------+

 | Gateway | | Server |

 +---------+ +---------+

 | --\ |

 | | Anytime after first PULL_DATA for each packet to TX |-|

 | --- |

 | |

 | PULL_RESP (token 0, JSON payload) |

 |<---|

 | |

5.2. PULL_DATA packet ###

That packet type is used by the gateway to poll data from the server.

This data exchange is initialized by the gateway because it might be

impossible for the server to send packets to the gateway if the gateway is

behind a NAT.

When the gateway initialize the exchange, the network route towards the

server will open and will allow for packets to flow both directions.

The gateway must periodically send PULL_DATA packets to be sure the network

route stays open for the server to be used at any time.

 Bytes | Function

:------:|---

 0 | protocol version = 1

 1-2 | random token

 3 | PULL_DATA identifier 0x02

 4-11 | Gateway unique identifier (MAC address)

33

5.3. PULL_ACK packet ###

That packet type is used by the server to confirm that the network route is

open and that the server can send PULL_RESP packets at any time.

 Bytes | Function

:------:|---

 0 | protocol version = 1

 1-2 | same token as the PULL_DATA packet to acknowledge

 3 | PULL_ACK identifier 0x04

5.4. PULL_RESP packet ###

That packet type is used by the server to send RF packets and associated

metadata that will have to be emitted by the gateway.

 Bytes | Function

:------:|---

 0 | protocol version = 1

 1-2 | unused bytes

 3 | PULL_RESP identifier 0x03

 4-end | JSON object, starting with {, ending with }, see section 6

6. Downstream JSON data structure

The root object must contain an object named "txpk":


``` json 

{ 

 "txpk": {...} 

} 

``` 


That object contain a RF packet to be emitted and associated metadata with the following fields:

34

 Name | Type | Function

:----:|:------:|--

 imme | bool | Send packet immediately (will ignore tmst & time)

 tmst | number | Send packet on a certain timestamp value (will ignore time)

 time | string | Send packet at a certain time (GPS synchronization required)

 freq | number | TX central frequency in MHz (unsigned float, Hz precision)

 rfch | number | Concentrator "RF chain" used for TX (unsigned integer)

 powe | number | TX output power in dBm (unsigned integer, dBm precision)

 modu | string | Modulation identifier "LORA" or "FSK"

 datr | string | LoRa datarate identifier (eg. SF12BW500)

 datr | number | FSK datarate (unsigned, in bits per second)

 codr | string | LoRa ECC coding rate identifier

 fdev | number | FSK frequency deviation (unsigned integer, in Hz)

 ipol | bool | Lora modulation polarization inversion

 prea | number | RF preamble size (unsigned integer)

 size | number | RF packet payload size in bytes (unsigned integer)

 data | string | Base64 encoded RF packet payload, padding optional

 ncrc | bool | If true, disable the CRC of the physical layer (optional)

Most fields are optional.

If a field is omitted, default parameters will be used.

Examples (white-spaces, indentation and newlines added for readability):


``` json 

{"txpk":{ 

 "imme":true, 

 "freq":864.123456, 

 "rfch":0, 

 "powe":14, 

 "modu":"LORA", 

 "datr":"SF11BW125", 

 "codr":"4/6", 

 "ipol":false, 

 "size":32, 

 "data":"H3P3N2i9qc4yt7rK7ldqoeCVJGBybzPY5h1Dd7P7p8v" 

}} 



35 

``` 



``` json 

{"txpk":{ 

 "imme":true, 

 "freq":861.3, 

 "rfch":0, 

 "powe":12, 

 "modu":"FSK", 

 "datr":50000, 

 "fdev":3000, 

 "size":32, 

 "data":"H3P3N2i9qc4yt7rK7ldqoeCVJGBybzPY5h1Dd7P7p8v" 

}} 

``` 


7. Revisions

v1.2 ###

* Added value of FSK bitrate for upstream.

* Added parameters for FSK bitrate and frequency deviation for downstream.

v1.1 ###

* Added syntax for status report JSON object on upstream.

v1.0 ###

* Initial version.

