2 LoRaWAN[™] 1.0.2 Regional Parameters

3 Copyright © 2017 LoRa Alliance, Inc. All rights reserved.

NOTICE OF USE AND DISCLOSURE

Copyright © LoRa Alliance, Inc. (2017). All Rights Reserved.

The information within this document is the property of the LoRa Alliance™ ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance, Inc.

2400 Camino Ramon, Suite 375

San Ramon, CA 94583

Note: All Company, brand and product names may be trademarks that are the sole property of their respective owners.

The LoRa Alliance and LoRaWAN are marks used under license from the LoRa Alliance.

45

47

LoRaWAN™ 1.0.2 Regional Parameters

- 48 49
- 50 This document is a companion document to the LoRaWAN 1.0.2 protocol 51 specification
- 52
- 53 Authors:
- 54 LoRa Alliance Technical committee
- 55
- 56 Revision: B
- 57 Date: 2017 Feb
- 58 Status: Final
- 59
- 60
- 61
- 62
- 63
- 64

65 **Contents**

66		duction	
67	2 LoRa	WAN Regional Parameters	8
68	2.1 EU	J 863-870MHz ISM Band	
69	2.1.1	EU863-870 Preamble Format	8
70	2.1.2	EU863-870 ISM Band channel frequencies	8
71	2.1.3	EU863-870 Data Rate and End-device Output Power encoding	9
72	2.1.4	EU863-870 JoinAccept CFList	
73	2.1.5	EU863-870 LinkAdrReq command	
74	2.1.6	EU863-870 Maximum payload size	
75	2.1.7	• •	
76	2.1.8	EU863-870 Class B beacon and default downlink channel	
77	2.1.9		
78	2.2 US	6 902-928MHz ISM Band	
79	2.2.1	US902-928 Preamble Format	
80	2.2.2	US902-928 Channel Frequencies	
81		US902-928 Data Rate and End-device Output Power encoding	
82	2.2.4	US902-928 JoinAccept CFList	
83	2.2.5	US902-928 LinkAdrReg command	
84	2.2.6	US902-928 Maximum payload size	
85	2.2.0	US902-928 Receive windows	
86	2.2.7	US902-928 Class B beacon	
87	2.2.9	US902-928 Default Settings	
88		ina 779-787MHz ISM Band	
89	2.3 01	CN779-787 Preamble Format	-
89 90	-	CN779-787 ISM Band channel frequencies	
90 91			
		CN779-787 Data Rate and End-device Output Power encoding	
92		CN779-787 JoinAccept CFList	
93		CN779-787 LinkAdrReq command	
94	2.3.6	CN779-787 Maximum payload size	
95	2.3.7	CN779-787 Receive windows	
96		CN779-787 Class B beacon and default downlink channel	
97		CN779-787 Default Settings	
98		J 433MHz ISM Band	
99		EU433 Preamble Format	
100	2.4.2	EU433 ISM Band channel frequencies	24
101		EU433 Data Rate and End-device Output Power encoding	
102		EU433 JoinAccept CFList	
103		EU433 LinkAdrReq command	
104		EU433 Maximum payload size	
105	2.4.7	EU433 Receive windows	
106	2.4.8	EU433 Class B beacon and default downlink channel	27
107	2.4.9		
108		stralia 915-928MHz ISM Band	-
109	2.5.1	AU915-928 Preamble Format	
110	2.5.2	AU915-928 Channel Frequencies	
111	2.5.3	AU915-928 Data Rate and End-point Output Power encoding	
112		AU915-928 JoinAccept CFList	
113		AU915-928 LinkAdrReq command	
114		AU915-928 Maximum payload size	
115		AU915-928 Receive windows	

116	259	AU915-928 Class B beacon	21
117		AU915-928 Default Settings	
118		A 0913-928 Default Settings	
119		CN470-510 Preamble Format	
120		CN470-510 Channel Frequencies	
120		CN470-510 Data Rate and End-point Output Power encoding	
121			
122	2.6.5	CN470-510 JoinResp CFList	
123	2.6.5	CN470-510 LinkAdrReq command CN470-510 Maximum payload size	
124		CN470-510 Maximum payload size	
125		CN470-510 Receive windows CN470-510 Class B beacon	
120		CN470-510 Default Settings	
127		6923MHz ISM Band	
120		AS923 Preamble Format	
129		AS923 Freamble Format AS923 ISM Band channel frequencies	
130	2.7.2	AS923 TOM Datio Charine inequencies	
132		AS923 Data Rate and End-point Output Power encoding	
		AS923 JoinAccept CFList	
133		AS923 LinkAdrReq command	
134		AS923 Maximum payload size	
135		AS923 Receive windows	
136		AS923 Class B beacon and default downlink channel	
137		AS923 Default Settings	
138		uth Korea 920-923MHz ISM Band	
139		KR920-923 Preamble Format	
140		KR920-923 ISM Band channel frequencies	
141		KR920-923 Data Rate and End-device Output Power encoding	
142	2.8.4	KR920-923 JoinAccept CFList	
143	2.8.5	KR920-923 LinkAdrReq command	
144	2.8.6	KR920-923 Maximum payload size	
145		KR920-923 Receive windows	
146		KR920-923 Class B beacon and default downlink channel	
147		KR920-923 Default Settings	
148		dia 865-867 MHz ISM Band	
149		INDIA 865-867 Preamble Format	
150		INDIA 865-867 ISM Band channel frequencies.	
151	2.9.3	INDIA 865-867 Data Rate and End-device Output Power Encoding	
152			
153	2.9.5	INDIA 865-867 LinkAdrReq command	
154	2.9.6	INDIA 865-867 Maximum payload size	
155			
156		INDIA 865-867 Class B beacon and default downlink channel	
157		INDIA 865-867 Default Settings	
158		sions	
159		evision A	
160		evision B	
161		ography	
162			
163	5 NOT	ICE OF USE AND DISCLOSURE	
164			

165 **Tables**

167	Table 2: EU863-870 default channels	Q
168	Table 3: EU863-870 JoinReq Channel List	
169	Table 4: TX Data rate table	
170	Table 5: TX power table	-
171	Table 6: ChMaskCntl value table	
172	Table 7: EU863-870 maximum payload size	
173	Table 8 : EU863-870 maximum payload size (not repeater compatible)	
174	Table 9: EU863-870 downlink RX1 data rate mapping	
175	Table 10: EU863-870 beacon settings	
176	Table 11: TX Data rate table	
177	Table 12: TX power table	
178	Table 13: ChMaskCntl value table	
179	Table 14: US902-928 maximum payload size (repeater compatible)	
180	Table 15 : US902-928 maximum payload size (not repeater compatible)	
181	Table 16: US902-928 downlink RX1 data rate mapping	
182	Table 17: US902-928 beacon settings	
183	Table 18: CN779-787 synch words	
184	Table 19: CN780 JoinReg Channel List	
185	Table 20: Data rate and TX power table	
186	Table 21: ChMaskCntl value table	
187	Table 22: CN780 maximum payload size	
188	Table 23 : CN780 maximum payload size (not repeater compatible)	22
189	Table 24: CN780 downlink RX1 data rate mapping	22
190	Table 25: CN780 beacon settings	
191	Table 26: EU433 synch words	
192	Table 27: EU433 JoinReg Channel List	
193	Table 28: Data rate and TX power table	
194	Table 29: ChMaskCntl value table	20 26
195	Table 30: EU433 maximum payload size	
196	Table 31 : EU433 maximum payload size (not repeater compatible)	
197	Table 32 : EU433 downlink RX1 data rate mapping	27 27
198	Table 33 : EU433 beacon settings	
199	Table 34: AU915-928 Data rate table	
200	Table 35 : AU915-928 TX power table	
200	Table 36: ChMaskCntl value table	
202	Table 37: AU915-928 maximum payload size	
202	Table 38: AU915-928 maximum payload size (not repeater compatible)	
203	Table 39 : AU915-928 downlink RX1 data rate mapping	
205	Table 40 : AU915-928 beacon settings	
206	Table 41: CN470 Data rate and TX power table	
207	Table 42: CN470 ChMaskCntl value table	
208	Table 43: CN470-510 maximum payload size	
209	Table 44 : CN470-510 maximum payload size (not repeater compatible)	
210	Table 45: CN470-510 downlink RX1 data rate mapping	
211	Table 46 : CN470-510 beacon settings	
212	Table 47: AS923 synch words	
213	Table 48: AS923 default channels	
214	Table 49: AS923 JoinReq Channel List	
215	Table 50: Data rate table	
216	Table 51: TxPower table	
217	Table 52: ChMaskCntl value table	
218	Table 53: AS923 maximum payload size	
219	Table 54: AS923 maximum payload size (not repeater compatible)	
•		

220	Table 55 : AS923 beacon settings	42
221	Table 56: Center frequency, bandwidth, maximum EIRP output power table	
222	Table 57: KR920-923 default channels	43
223	Table 58: KR920-923 JoinReq Channel List	44
224	Table 59: TX Data rate table	44
225	Table 60: TX power table	44
226	Table 61: ChMaskCntl value table	45
227	Table 62: KR920-923 maximum payload size	
228	Table 63 : KR920-923 maximum payload size (not repeater compatible)	46
229	Table 64 : KR920-923 downlink RX1 data rate mapping	46
230	Table 65 : KR920-923 beacon settings	47
231	Table 66: India 865-867 synch words	48
232	Table 67: INDIA 865-867 default channels	48
233	Table 68: INDIA 865-867 JoinReq Channel List	48
234	Table 69: TX Data rate table	49
235	Table 70: TxPower table	49
236	Table 71: ChMaskCntl value table	50
237	Table 72: INDIA 865-867 maximum payload size	51
238	Table 73 : INDIA 865-867 maximum payload size (not repeater compatible)	51

240 Figures

241	Figure 1: US902-928 channel frequencies	13
	Figure 2: AU915-928 channel frequencies	
243	Figure 3: CN470-510 channel frequencies	33
244		

245 **1 Introduction**

This document describes the LoRaWAN[™] regional parameters for different regulatory
regions worldwide. This document is a companion document to the LoRaWAN 1.0.2 protocol
specification [LORAWAN]. Separating the regional parameters from the protocol
specification allows addition of new regions to the former without impacting the latter
document.

- 254
- 204

256 **2 LoRaWAN Regional Parameters**

257 2.1 EU 863-870MHz ISM Band

258 **2.1.1 EU863-870 Preamble Format**

- 259 The following synchronization words should be used:
- 260

	Modulation	Sync word	Preamble length	
-	LORA	0x34	8 symbols	
-	GFSK	0xC194C1	5 bytes	
	Table 1: EU863-870 synch words			

261

262 **2.1.2 EU863-870 ISM Band channel frequencies**

This section applies to any region where the ISM radio spectrum use is defined by the ETSI [EN300.220] standard.

The network channels can be freely attributed by the network operator. However the three following default channels must be implemented in every EU868MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

268

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

269

Table 2: EU863-870 default channels

In order to access the physical medium the ETSI regulations impose some restrictions such maximum time the transmitter can be on or the maximum time a transmitter can transmit per hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a socalled **Listen Before Talk Adaptive Frequency Agility** (LBT AFA) transmissions management. The current LoRaWAN specification exclusively uses duty-cycled limited transmissions to comply with the ETSI regulations.

EU868MHz end-devices should be capable of operating in the 863 to 870 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

The following table gives the list of frequencies that should be used by end-devices to broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.10 868.30 868.50	DR0 – DR5 / 0.3-5 kbps	3

Table 3: EU863-870 JoinReg Channel List

290 2.1.3 EU863-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU863-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in EU863-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU863-870 band:

295

DataRate	Configuration	Indicative physical bit rate [bit/s]		
0	LoRa: SF12 / 125 kHz	250		
1	LoRa: SF11 / 125 kHz	440		
2	LoRa: SF10 / 125 kHz	980		
3	LoRa: SF9 / 125 kHz	1760		
4	LoRa: SF8 / 125 kHz	3125		
5	LoRa: SF7 / 125 kHz	5470		
6	LoRa: SF7 / 250 kHz	11000		
7	FSK: 50 kbps	50000		
815	RFU			
Table 4: TX Data rate table				

296 297

298 EIRP¹ refers to the Equivalent Isotropically Radiated Power, which is the radiated output

power referenced to an isotropic antenna radiating power equally in all directions and whosegain is expressed in dBi.

TXPower	Configuration (EIRP)		
0	MaxEIRP		
1	MaxEIRP – 2dB		
2	MaxEIRP – 4dB		
3	MaxEIRP – 6dB		
4	MaxEIRP – 8dB		
5	MaxEIRP – 10dB		
6	MaxEIRP – 12dB		
7	MaxEIRP – 14dB		
815	RFU		
Table 5: TX power table			

¹ ERP = EIRP – 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve 16dBm
 EIRP, the Max EIRP should be communicated to the network server using an out-of-band
 channel during the end-device commissioning process.

308

309 2.1.4 EU863-870 JoinAccept CFList

310

The EU 863-870 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

317

Size (bytes)	3	3	3	3	3	1
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

325 2.1.5 EU863-870 LinkAdrReq command

The EU863-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

328

ChMaskCntl	ChMask applies to
0	Channels 1 to 16
1	RFU
4	RFU
5	RFU
6	All channels ON
	The device should enable all currently defined
	channels independently of the ChMask field
	value.
7	RFU
	Table 6: ChMaskCntl value table

329

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject
 the command and unset the "Channel mask ACK" bit in its response.

332 **2.1.6 EU863-870 Maximum payload size**

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in

the absence of the optional FOpt control field (N) is also given for information only. The 336 337 value of N might be smaller if the **FOpt** field is not empty:

338

М	N	
59	51	
59	51	
59	51	
123	115	
230	222	
230	222	
230	222	
230	222	
Not defined		
	59 59 59 123 230 230 230 230 230	

339

Table 7: EU863-870 maximum payload size

340 If the end-device will never operate with a repeater then the maximum application payload

341 length in the absence of the optional **FOpt** control field should be:

342

DataRate	Μ	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

343

Table 8 : EU863-870 maximum payload size (not repeater compatible)

2.1.7 EU863-870 Receive windows 344

The RX1 receive window uses the same channel than the preceding uplink. The data rate is 345 a function of the uplink data rate and the RX1DROffset as given by the following table. The 346 347 allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are 348 reserved for future use. 349

RX1DROffset Upstream data rate	0	1 Dow	2 vnstream data	3 a rate in RX1	4 slot	5
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

350

Table 9: EU863-870 downlink RX1 data rate mapping

351

352 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 353 869.525 MHz / DR0 (SF12, 125 kHz)

355 2.1.8 EU863-870 Class B beacon and default downlink channel

356 The beacons SHALL be transmitted using the following settings

DR		3	Correspon		oding fact	or with 125 kHz BW
CR		1	Corresponds to SF9 spreading factor with 125 kHz BW Coding rate = 4/5			
Signal polarity		verted	As opposed to normal downlink traffic which uses inverted			
			••		al polarity	
		Table '	10: EU863-870) beacon settin	igs	
The beacon frar	ne conte	nt is [.]				
Size (bytes)	2	4	2	7	2	7
 BCNPayload	RFU	Time	CRC	GwSpecific	CRC	-
The beacon def	ault broa	dcast frequ	ency is 869	.525MHz.		_
The class B def	ault dowi	nlink pinaSl	ot frequency	/ is 869.525N	ЛНz	
		in it pinger	ornoquono	, 10 000102011		
2.1.9 EU863-	870 Det	ault Settir	ngs			
The following pa	arameter	s are recom	nmended va	lues for the E	EU863-870	0MHz band.
RECEIVE DEL	AY1		1 s			
RECEIVE_DEL			2 s (must l	be RECEIVE	_DELAY1	+ 1s)
JOIN_ACCEPT	_DELAY	1	5 s `			,
JOIN_ACCEPT		2	6 s			
MAX_FCNT_G			16384			
ADR_ACK_LIM			64			
ADR_ACK_DEL			32			
ACK_TIMEOUT			2 +/- 1 s (r	andom delay	between	1 and 3 seconds)
						erent from those defaul
•	example				0	CEIVE_DELAY1 and
			•			icated to the networ
						ssioning process. The
network server	may not a	accept para	meters diffe	erent from the	se detaul	t values.

379 2.2 US 902-928MHz ISM Band

This section defines the regional parameters for the USA, Canada and all other countries adopting the entire FCC-Part15 regulations in 902-928 ISM band.

382 2.2.1 US902-928 Preamble Format

- 383 The following synchronization words should be used:
- 384

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

385

392

393 394

395 396

LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.

387 2.2.2 US902-928 Channel Frequencies

388 The 915 MHz ISM Band shall be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly
- 390 DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly
 391 by 200 kHz to 914.9 MHz
 - Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz
 - Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13, starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

³⁹⁷ 398

399 915 MHz ISM band end-devices are required to operate in compliance with the relevant400 regulatory specifications, to include.

- Frequency-Hopping, Spread-Spectrum (FHSS) mode, which requires the device transmit at a measured conducted power level no greater than +30 dBm, for a period of no more than 400 msec and over at least 50 channels, each of which occupy no greater than 250 kHz of bandwidth.
- Digital Transmission System (DTS) mode, which requires that the device use channels greater than or equal to 500 kHz and comply to a conducted Power
 Spectral Density measurement of no more than +8 dBm per 3kHz of spectrum. In practice, this limits the conducted output power of an end-device to +26 dBm.
- Hybrid mode, which requires that the device transmit over multiple channels (this may be less than the 50 channels required for FHSS mode, but is recommended to be at least 4) while complying with the Power Spectral Density requirements of DTS mode and the 400 msec dwell time of FHSS mode. In practice this limits the measured conducted power of the end-device to 21 dBm.
- Devices which use an antenna system with a directional gain greater than +6 dBi, but reduce the specified conducted output power by the amount in dB of directional gain over +6 dBi.

Figure 1: US902-928 channel frequencies

417 US902-928 end-devices MUST be capable of operating in the 902 to 928 MHz frequency

band and MUST feature a channel data structure to store the parameters for 72 channels.

This channel data structure contains a list of frequencies and the set of data rates available for each frequency.

421 If using the over-the-air activation procedure, it is recommended that the end-device transmit 422 the JoinRequest message alternatively on a random 125 kHz channel amongst the 64 423 channels defined using DR0 and a random 500 kHz channel amongst the 8 channels defined using DR4. The end-device SHALL change channel for every transmission. For 424 rapid network acquisition in mixed channel plan environments, it is further recommended 425 426 that the device follow a channel selection sequence (still random) which efficiently probes 427 the groups of nine (8 + 1) channels which are typically implemented by smaller gateways 428 (channel groups 0-7+64, 8-15+65, etc.).

429 Personalized devices shall have all 72 channels enabled following a reset and shall use the 430 channels for which the device's default data-rate is valid.

431 **2.2.3 US902-928 Data Rate and End-device Output Power encoding**

432 FCC regulation imposes a maximum dwell time of 400ms on uplinks. The 433 *TxParamSetupReq* is not implemented by US902-928 devices.

The following encoding is used for Data Rate (**DR**) and End-device conducted Power (**TXPower**) in the US902-928 band:

436

DataRate	Configuration	Indicative physical bit rate [bit/sec]		
0	LoRa: SF10 / 125 kHz	980		
1	LoRa: SF9 / 125 kHz	1760		
2	LoRa: SF8 / 125 kHz	3125		
3	LoRa: SF7 / 125 kHz	5470		
4	LoRa: SF8 / 500 kHz	12500		
5:7	RFU			
8	LoRa: SF12 / 500 kHz	980		
9	LoRa: SF11 / 500 kHz	1760		
10	LoRa: SF10 / 500 kHz	3900		
11	LoRa: SF9 / 500 kHz	7000		
12	LoRa: SF8 / 500 kHz	12500		
13	LoRa: SF7 / 500 kHz	21900		
14:15	RFU			
	Table 11: TX Data rate table			

437

438 439

440

TXPower	Configuration (conducted power)	
0	30 dBm – 2*TXpower	
1	28 dBm	
2	26 dBm	
3:9		
10	10 dBm	
11:15	RFU	

Note: DR4 is purposely identical to DR12, DR8..13 must be

implemented in end-devices and are reserved for future applications

Table 12: TX power table

442 2.2.4 US902-928 JoinAccept CFList

The US902-928 LoRaWAN does not support the use of the optional **CFlist** appended to the JoinAccept message. If the **CFlist** is not empty it is ignored by the end-device.

445 2.2.5 US902-928 LinkAdrReq command

446 For the US902-928 version the **ChMaskCntl** field of the *LinkADRReq* command has the 447 following meaning:

448

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	Channels 16 to 31	
4	Channels 64 to 71	
5	RFU	
6	All 125 kHz ON	
	ChMask applies to	
	channels 64 to 71	
7	All 125 kHz OFF	
	ChMask applies to	
	channels 64 to 71	
Table 13: ChMaskCntl value table		

449

450 If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz 451 channels are disabled. Simultaneously the channels 64 to 71 are set according to the 452 **ChMask** bit mask. The DataRate specified in the command need not be valid for channels 453 specified in the ChMask, as it governs the global operational state of the end-device.

454

455	Note: FCC regulation requires hopping over at least 50 channels when
456	using maximum output power. It is possible to have end-devices with
457	less channels when limiting the end-device conducted transmit power
458	to 21 dBm.
459	Note: A common network server action may be to reconfigure a device
460	through multiple LinkAdrReq commands in a contiguous block of MAC
461	Commands. For example to reconfigure a device from 64 channel
462	operation to the first 8 channels could contain two LinkAdrReq, the first
463	(ChMaskCntl = 7) to disable all 125kHz channels and the second
464	(ChMaskCntrl = 0) to enable a bank of 8 125kHz channels.
465	

466 2.2.6 US902-928 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

	•	~	
4	7	3	

DataRate	М	N	

Ra Alliance

0	19	11	
1	61	53	
2	133	125	
3	250	242	
4	250	242	
5:7	Not defined		
8	41	33	
9	117	109	
10	230	222	
11	230	222	
12	230	222	
13	230	222	
14:15	Not defined		

474

Table 14: US902-928 maximum payload size (repeater compatible)

475

476 The greyed lines correspond to the data rates that may be used by an end-device behind a 477 repeater.

478 If the end-device will never operate under a repeater then the maximum application payload 479 length in the absence of the optional **FOpt** control field should be:

480

DataRate	М	N			
0	19	11			
1	61	53			
2	133	125			
3	250	242			
4	250	242			
5:7	Not de	Not defined			
8	61	53			
9	137	129			
10	250	242			
11	250	242			
12	250	242			
13	250	242			
14:15	Not de	efined			

481

489

Table 15 : US902-928 maximum payload size (not repeater compatible)

482 2.2.7 US902-928 Receive windows

- 483 The RX1 receive channel is a function of the upstream channel used to initiate the • data exchange. The RX1 receive channel can be determined as follows. 484 485 RX1 Channel Number = Transmit Channel Number modulo 8
 - The RX1 window data rate depends on the transmit data rate (see Table 16 below). •
- 486 487 The RX2 (second receive window) settings uses a fixed data rate and frequency. •
- Default parameters are 923.3MHz / DR8 488
 - Upstream data rate Downstream data rate **RX1DROffset** 2 0 1 3 DR10 DR9 DR8 DR0 DR8 DR1 DR11 DR10 DR9 DR8 DR2 **DR12** DR11 **DR10** DR9 DR3 **DR13 DR12 DR11 DR10** DR4 DR13 **DR13 DR12 DR11**

Table 16: US902-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are reserved for future use.

493 **2.2.8 US902-928 Class B beacon**

494 The beacons are transmitted using the following settings:

			5		5 5			
	DR		8	Corre	esponds to SF12	spreading bw	factor with	500kHz
	CR		1		Codi	4/5		
	Signal polarity	Non-inverted		As c	As opposed to normal downlink inverted signal pole			h uses
	frequencies	923.3 to 927.5MHz with 600kHz steps		27.5MHz Beaconing is performed on the s Hz steps normal downstream traffic as def specification				
495			Table 1	7: US902-9	28 beacon setting	js		
496 497	The downstrean	n channe	el used for a	given bea	acon is: eacon_time]]	dula 0		
	 Channel = [floor (beacon_time/beacon_period)] modulo 8 whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon 							
498 499	 whereby frame 	beacon_	_time is the i	integer va	lue of the 4 byte	es "Time'	" field of the	beacon
500	 whereby 	beacon_	_period is the	e periodic	ity of beacons ,	128 sec	onds	
501 502	 whereby 	floor(x)	designates r	ounding t	o the integer im	mediatel	y inferior or	equal to x
503 504 505					ansmitted on 92 be on 923.3Mhz		, the secon	d
506								
		Be	acon channe	l nb	Frequency [MHz]		
			0		923.3			
			1		923.9			
			2		924.5			
			3		925.1			
			4		925.7			
			<u>5</u> 6		926.3 926.9		_	
			7		920.9			
507			1		521.5			
508								
509	The beacon frar	ne conte	nt is:					
	Size (bytes)	5	4	2	7	3	2	
	BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC	
510					· · · · · · · · · · · · · · · · · · ·			
511	2.2.9 US902-	928 Def	ault Settin	gs				
512 513 514 515 516	2.2.9 US902-928 Default Settings The following parameters are recommended values for the US902-928 band. RECEIVE_DELAY1 1 s RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s) JOIN_ACCEPT_DELAY1 5 s JOIN_ACCEPT_DELAY2 6 s							
517	MAX_FCNT_GA	٩P		16384				

518 ADR_ACK_LIMIT

519 ADR_ACK_DELAY 520 ACK_TIMEOUT

2 +/- 1 s (random delay between 1 and 3 seconds)

521 If the actual parameter values implemented in the end-device are different from those default 522 values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 523 parameters must be communicated to the network server using an out-of-band channel 524 during the end-device commissioning process. The network server may not accept 525 parameters different from those default values.

64

32

527 2.3 China 779-787MHz ISM Band

528 2.3.1 CN779-787 Preamble Format

- 529 The following synchronization words should be used :
- 530

Modulation	Sync word	Preamble length					
LORA	0x34	8 symbols					
GFSK	0xC194C1	5 bytes					
T	Table 18: CN779-787 synch words						

531

533

538

539

532 **2.3.2 CN779-787 ISM Band channel frequencies**

534 The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device 535 EIRP is less than 12.15dBm.

- 536 The end-device transmit duty-cycle should be lower than 1%.
- 537 The LoRaWAN channels center frequency can be in the following range:
 - Minimum frequency : 779.5MHz
 - Maximum frequency : 786.5 MHz

540 CN780MHz end-devices should be capable of operating in the 779 to 787 MHz frequency 541 band and should feature a channel data structure to store the parameters of at least 16 542 channels. A channel data structure corresponds to a frequency and a set of data rates 543 usable on this frequency.

544 The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and 545 must be implemented in every end-device. Those default channels cannot be modified 546 through the **NewChannelReq** command and guarantee a minimal common channel set 547 between end-devices and gateways of all networks. Other channels can be freely distributed 548 across the allowed frequency range on a network per network basis.

549 The following table gives the list of frequencies that should be used by end-devices to 550 broadcast the JoinReq message The JoinReq message transmit duty-cycle shall follow the 551 rules described in chapter "Retransmissions back-off" of the LoRaWAN specification 552 document.

553

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	779.5 779.7 779.9 780.5 780.7 780.9	DR0 – DR5 / 0.3-5 kbps	6	<0.1%
	Table	19: CN780 Join	Req Channel Lis	t	

556 2.3.3 CN779-787 Data Rate and End-device Output Power encoding

557 There is no dwell time limitation for the CN779-787 PHY layer. The *TxParamSetupReq* 558 MAC command is not implemented by CN779-787 devices.

559 The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the 560 CN780 band:

011/00 ban							
DataRate	Configuration	Indicative physical bit rate [bit/s]	TXPower	Configuration (EIRP)			
0	LoRa: SF12 / 125 kHz	250	0	MaxEIRP			
1	LoRa: SF11 / 125 kHz	440	1	MaxEIRP – 2dB			
2	LoRa: SF10 / 125 kHz	980	2	MaxEIRP – 4dB			
3	LoRa: SF9 / 125 kHz	1760	3	MaxEIRP – 6dB			
4	LoRa: SF8 / 125 kHz	3125	4	MaxEIRP – 8dB			
5	LoRa: SF7 / 125 kHz	5470	5	MaxEIRP – 10dB			
6	LoRa: SF7 / 250 kHz	11000	615	RFU			
7	FSK: 50 kbps	50000					
815	RFU						

561 562 Table 20: Data rate and TX power table

563 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output 564 power referenced to an isotropic antenna radiating power equally in all directions and whose

565 gain is expressed in dBi.

566

567 By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 568 12.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-569 of-band channel during the end-device commissioning process.

570

571 **2.3.4 CN779-787 JoinAccept CFList**

572 The CN780 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 573 16 octets in the JoinAccept message.

574 In this case the CFList is a list of five channel frequencies for the channels four to eight 575 whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these 576 channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is 577 followed by a single RFU octet for a total of 16 octets.

578

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

579 The actual channel frequency in Hz is 100 x frequency whereby values representing 580 frequencies below 100 MHz are reserved for future use. This allows setting the frequency of 581 a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have 582 a frequency value of 0. The **CFList** is optional and its presence can be detected by the 583 length of the join-accept message. If present, the **CFList** replaces all the previous channels 584 stored in the end-device apart from the three default channels.

585 The newly defined channels are immediately enabled and usable by the end-device for 586 communication.

587 2.3.5 CN779-787 LinkAdrReq command

588

589 The CN780 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 590 0 the ChMask field individually enables/disables each of the 16 channels.

591

ChMaskCntl	ChMask applies to					
0	Channels 1 to 16					
1	RFU					
4	RFU					
5	RFU					
6	All channels ON					
	The device should enable all currently defined					
	channels independently of the ChMask field					
	value.					
7	RFU					
	Table 21: ChMaskCntl value table					

592 593

594 If the ChMask field value is one of values meaning RFU, then end-device should reject the 595 command and unset the "**Channel mask ACK**" bit in its response.

596 2.3.6 CN779-787 Maximum payload size

597 The maximum **MACPayload** size length (M) is given by the following table. It is derived from 598 limitation of the PHY layer depending on the effective modulation rate used taking into 599 account a possible repeater encapsulation layer. The maximum application payload length in 600 the absence of the optional **FOpt** control field (N) is also given for information only. The 601 value of N might be smaller if the **FOpt** field is not empty: 602

DataRate	М	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6	250	242		
7	230	222		
8:15	8:15 Not defined			
	Table 22: CN780 maximum	payload size		

603 604

605 If the end-device will never operate with a repeater then the maximum application payload

606 length in the absence of the optional **FOpt** control field should be:

DataRate	М	Ν
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242

8:15 Not defined
Table 23 : CN780 maximum payload size (not repeater compatible)

609 2.3.7 CN779-787 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use

614

RX1DROffset	0	1	2	3	4	5
		Dow	nstream data	a rate in RX1	slot	
Upstream data rate						
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

615

Table 24: CN780 downlink RX1 data rate mapping

616 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 617 786 MHz / DR0.

618 2.3.8 CN779-787 Class B beacon and default downlink channel

619 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

620

Table 25: CN780 beacon settings

621 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- 622 The beacon default broadcast frequency is 785MHz.
- 623 The class B default downlink pingSlot frequency is 785MHz
- 624

625 2.3.9 CN779-787 Default Settings

The following parameters are recommended values for the CN779-787MHz band.

627	RECEIVE_DELAY1	1 s
628	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
629	JOIN_ACCEPT_DELAY1	5 s
630	JOIN_ACCEPT_DELAY2	6 s
631	MAX_FCNT_GAP	16384
632	ADR_ACK_LIMIT	64

633 ADR_ACK_DELAY 634 ACK_TIMEOUT

2 +/- 1 s (random delay between 1 and 3 seconds)

635 If the actual parameter values implemented in the end-device are different from those default 636 values (for example the end-device uses a longer RECEIVE_DELAY1 and 637 RECEIVE_DELAY2 latency), those parameters must be communicated to the network 638 server using an out-of-band channel during the end-device commissioning process. The 639 network server may not accept parameters different from those default values.

640 **2.4 EU 433MHz ISM Band**

641 **2.4.1 EU433 Preamble Format**

- 642 The following synchronization words should be used :
- 643

Мс	odulation	Sync word	Preamble length		
	LORA	0x34	8 symbols		
	GFSK	0xC194C1	5 bytes		
Table 26: EU433 synch words					

644

645 2.4.2 EU433 ISM Band channel frequencies

The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio deviceEIRP is less than 12.15dBm.

- 648 The end-device transmit duty-cycle should be lower than 1%¹
- 649 The LoRaWAN channels center frequency can be in the following range:
- Minimum frequency : 433.175 MHz
- Maximum frequency : 434.665 MHz

EU433 end-devices should be capable of operating in the 433.05 to 434.79 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

661 The following table gives the list of frequencies that should be used by end-devices to 662 broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the 663 rules described in chapter "Retransmissions back-off" of the LoRaWAN specification 664 document.

665

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	433.175 433.375 433.575	DR0 – DR5 / 0.3-5 kbps	3	<1%

666 667 Table 27: EU433 JoinReq Channel List

¹ The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.

668 2.4.3 EU433 Data Rate and End-device Output Power encoding

669 There is no dwell time limitation for the EU433 PHY layer. The *TxParamSetupReq* MAC command is not implemented by EU433 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU433 band:

673

DataRate	Configuration	Indicative physical bit rate [bit/s]	TXPower	Configuration (EIRP)
0	LoRa: SF12 / 125 kHz	250	0	MaxEIRP
1	LoRa: SF11 / 125 kHz	440	1	MaxEIRP – 2dB
2	LoRa: SF10 / 125 kHz	980	2	MaxEIRP – 4dB
3	LoRa: SF9 / 125 kHz	1760	3	MaxEIRP – 6dB
4	LoRa: SF8 / 125 kHz	3125	4	MaxEIRP – 8dB
5	LoRa: SF7 / 125 kHz	5470	5	MaxEIRP – 10dB
6	LoRa: SF7 / 250 kHz	11000	615	RFU
7	FSK: 50 kbps	50000		
815	RFU			

674

Table 28: Data rate and TX power table

675

676 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output 677 power referenced to an isotropic antenna radiating power equally in all directions and whose

- 678 gain is expressed in dBi.
- 679

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve
12.15dBm EIRP, the Max EIRP should be communicated to the network server using an outof-band channel during the end-device commissioning process.

- 683
- 684

685 2.4.4 EU433 JoinAccept CFList

686

The EU433 ISM band LoRaWAN implements an optional channel frequency list (CFlist) of
 octets in the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 kHz LoRa modulation. The list of frequencies is followed by a single RFU octet for a total of 16 octets.

693

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

702 2.4.5 EU433 LinkAdrReq command

The EU433 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

705

ChMaskCntl	ChMask applies to			
0	Channels 1 to 16			
1	RFU			
4	RFU			
5	RFU			
6	All channels ON			
The device should enable all currently define				
	channels independently of the ChMask field			
	value.			
7	RFU			
Table 29: ChMaskCntl value table				

706

If the ChMask field value is one of the values meaning RFU, then end-device should reject
 the command and unset the "Channel mask ACK" bit in its response.

709 2.4.6 EU433 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

715

DataRate	М	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6	230	222		
7	230	222		
8:15	Not defined			
Table 30: EU433 maximum payload size				

- 717
- 718 If the end-device will never operate with a repeater then the maximum application payload
- 719 length in the absence of the optional **FOpt** control field should be:

720

DataRate	M	Ν
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242

7	250	242		
8:15	Not de	efined		
Table 31 : EU433 maximum payload size (not repeater compatible)				

722

723 2.4.7 EU433 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

728

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	Downstream data rate in RX1 slot			
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2
Table 32 : ELI/33 downlink PX1 data rate manning						

729

The RX2 receive window uses a fixed frequency and data rate. The default parameters are
434.665MHz / DR0 (SF12, 125kHz).

732

733 **2.4.8 EU433 Class B beacon and default downlink channel**

734 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

735

Table 33 : EU433 beacon settings

736 The beacon frame content is:

Size (bytes)	2	4	2	7	2	
BCNPayload	RFU	Time	CRC	GwSpecific	CRC	

- The beacon default broadcast frequency is 434.665MHz.
- 738 The class B default downlink pingSlot frequency is 434.665MHz
- 739

740 2.4.9 EU433 Default Settings

The following parameters are recommended values for the EU433band.

5 s

- 742RECEIVE_DELAY11 s743RECEIVE_DELAY22 s (must be RECEIVE_DELAY1 + 1s)
- 744 JOIN_ACCEPT_DELAY1

Table 32 : EU433 downlink RX1 data rate mapping

745	JOIN_ACCEPT_DELAY2	6 s
746	MAX_FCNT_GAP	16384
747	ADR_ACK_LIMIT	64
748	ADR_ACK_DELAY	32
749	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)
750		

751 If the actual parameter values implemented in the end-device are different from those default 752 values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 753 parameters must be communicated to the network server using an out-of-band channel 754 during the and device communication measure. The network server using an out-of-band channel

- during the end-device commissioning process. The network server may not acceptparameters different from those default values.
- 756

760

757 **2.5 Australia 915-928MHz ISM Band**

758 2.5.1 AU915-928 Preamble Format

759 The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the AU915-928 ISM band.

762 2.5.2 AU915-928 Channel Frequencies

763 The AU ISM Band shall be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz
 - Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

772

769

770 771

Figure 2: AU915-928 channel frequencies

AU ISM band end-devices may use a maximum EIRP of +30 dBm.

AU915-928 end-devices should be capable of operating in the 915 to 928 MHz frequency

band and should feature a channel data structure to store the parameters of 72 channels. A
channel data structure corresponds to a frequency and a set of data rates usable on this
frequency.

If using the over-the-air activation procedure, the end-device should broadcast the JoinReq message alternatively on a random 125 kHz channel amongst the 64 channels defined using

- 781 DR0 and a random 500 kHz channel amongst the 8 channels defined using DR6. The enddevice should change channel for every transmission. 782
- 783 Personalized devices shall have all 72 channels enabled following a reset.

2.5.3 AU915-928 Data Rate and End-point Output Power encoding 784

- The *TxParamSetupReq* MAC command is not implemented by AU915-928 devices. 785
- 786 The following encoding is used for Data Rate (DR) and End-point EIRP (TXPower) in the 787 AU915-928 band:
- 788

DataRate	Configuration	Indicative physical bit rate [bit/sec]		
0	LoRa: SF12 / 125 kHz	250		
1	LoRa: SF11 / 125 kHz	440		
2	LoRa: SF10 / 125 kHz	980		
3	LoRa: SF9 / 125 kHz	1760		
4	LoRa: SF8 / 125 kHz	3125		
5	LoRa: SF7 / 125 kHz	5470		
6	LoRa: SF8 / 500 kHz	12500		
7	RFU			
8	LoRa: SF12 / 500 kHz	980		
9	LoRa: SF11 / 500 kHz	1760		
10	LoRa: SF10 / 500 kHz	3900		
11	LoRa: SF9 / 500 kHz	7000		
12	LoRa: SF8 / 500 kHz	12500		
13	LoRa: SF7 / 500 kHz	21900		
14:15	RFU			
Table 34: AU915-928 Data rate table				

789 790

- 791 DR6 is identical to DR12, DR8...13 must be implemented in end-devices and are reserved
- 792 for future applications.
- 793

TXPower	Configuration (EIRP)	
0	MaxEIRP	
1:10	MaxEIRP – 2*TXPower	
11:15	RFU	
Table 35 : AU915-928 TX power table		

794 795

796 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose 797 gain is expressed in dBi. 798

- 799
- 800 By default MaxEIRP is considered to be +30dBm. If the end-device cannot achieve 30dBm 801 EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process. 802
- 803

2.5.4 AU915-928 JoinAccept CFList 804

805 The AU915-928 LoRaWAN does not support the use of the optional **CFlist** appended to the 806 JoinAccept message. If the **CFlist** is not empty it is ignored by the end-device.

807 2.5.5 AU915-928 LinkAdrReq command

808 For the AU915-928 version the **ChMaskCntl** field of the *LinkADRReq* command has the 809 following meaning:

810

811

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
4	Channels 64 to 71
5	RFU
6	All 125 kHz ON
	ChMask applies to
	channels 64 to 71
7	All 125 kHz OFF
	ChMask applies to
	channels 64 to 71
Table 36:	ChMaskCntl value table

812

813 If **ChMaskCntl** = 6 (resp 7) then 125 kHz channels are enabled (resp disabled).

814 Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask.

815 2.5.6 AU915-928 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might be smaller if the **FOpt** field is not empty:

821

М	N
59	51
59	51
59	51
123	115
230	222
230	222
230	222
Not de	efined
41	33
117	109
230	222
230	222
230	222
230	222
Not de	efined
	59 59 59 123 230 230 230 Not de 41 117 230 230 230 230 230 230

822

Table 37: AU915-928 maximum payload size

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

825 If the end-device will never operate with a repeater then the maximum application payload 826 length in the absence of the optional **FOpt** control field should be:

LoRa Alliance[™]

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	Not de	efined	
8	61	53	
9	137	129	
10	250	242	
11	250	242	
12	250	242	
13	250	242	
14:15	Not defined		

828

831

832 833

834

Table 38: AU915-928 maximum payload size (not repeater compatible)

829 2.5.7 AU915-928 Receive windows 830 • The RX1 receive channel is a func-

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 RX1 Channel Number = Transmit Channel Number modulo 8
 - The RX1 window data rate depends on the transmit data rate (see Table 16 below).
 - The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3Mhz / DR8
- 835 836

Upstream data rate	Downstream data rate					
RX1DROff set	0	1	2	3	4	5
DR0	DR8	DR8	DR8	DR8	DR8	DR8
DR1	DR9	DR8	DR8	DR8	DR8	DR8
DR2	DR10	DR9	DR8	DR8	DR8	DR8
DR3	DR11	DR10	DR9	DR8	DR8	DR8
DR4	DR12	DR11	DR10	DR9	DR8	DR8
DR5	DR13	DR12	DR11	DR10	DR9	DR8
DR6	DR13	DR13	DR12	DR11	DR10	DR9
Table 39 : AU915-928 downlink RX1 data rate mapping						

837 838

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

841

842 2.5.8 AU915-928 Class B beacon

843 The beacons are transmitted using the following settings:

DR	10	Corresponds to SF10 spreading factor with	
		500kHz bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same channel	
	with 600kHz steps	that normal downstream traffic as defined in	

						specification
844		Table 40 : AU915-928 beacon settings				
845	The downstream channel used for a given beacon is:					
846		Channel = $\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$ modulo 8				
847 848 849	frame	 whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame whereby beacon_period is the periodicity of beacons , 128 seconds 				
850 851	•	_	•	•		y inferior or equal to x
852 853 854 855	Example: the first beacon will be transmitted on 923.3Mhz , the second on 923.9MHz, the 9 th beacon will be on 923.3Mhz again.					
		Beacon channe	el nb	Frequency [[MHz]	
		0		923.3		
		1		923.9		
		2		924.5		
		3		925.1		
		4		925.7		
		5		926.3		
		6		926.9		
		7		927.5		
856 857						
858	The beacon frame of	ontent is:				
	Size (bytes) 3	6 4	2	7	1	2
	BCNPayload RF	U Time	CRC	GwSpecific	RFU	CRC
859						

860 2.5.9 AU915-928 Default Settings

The following parameters are recommended values for the AU915-928 band.

862	RECEIVE_DELAY1	1 s
863	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
864	JOIN_ACCEPT_DELAY1	5 s
865	JOIN_ACCEPT_DELAY2	6 s
866	MAX_FCNT_GAP	16384
867	ADR_ACK_LIMIT	64
868	ADR_ACK_DELAY	32
869	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

870 If the actual parameter values implemented in the end-device are different from those default 871 values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 872 parameters must be communicated to the network server using an out-of-band channel 873 during the end-device commissioning process. The network server may not accept 874 parameters different from those default values.

876 **2.6 CN 470-510MHz Band**

877 2.6.1 CN470-510 Preamble Format

878 The following synchronization words should be used:

Modulation	Sync word	Preamble length		
LORA	0x34	8 symbols		

880 2.6.2 CN470-510 Channel Frequencies

- 882 In China, this band is defined by SRRC to be used for civil metering applications.
- 883 The 470 MHz ISM Band shall be divided into the following channel plans:
- Upstream 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

896 897 898

899

900 901

879

881

887 888

889

890

891

892

893 894

895

The LoRaWAN can be used in the Chinese 470-510MHz band as long as

- The radio device EIRP is less than 19.15dBm
- The transmission never lasts more than 5000 ms.
- 902 903

904

905 CN470-510 end-devices should be capable of operating in the 470 to 510 MHz frequency 906 band and should feature a channel data structure to store the parameters of 96 uplink 907 channels. A channel data structure corresponds to a frequency and a set of data rates 908 usable on this frequency.

If using the over-the-air activation procedure, the end-device should broadcast the JoinReq
 message on a random 125 kHz channel amongst the 96 uplink channels defined using DR5
 to DR0.

- 912 Personalized devices shall have all 96 channels enabled following a reset.
- 913

914 2.6.3 CN470-510 Data Rate and End-point Output Power encoding

- 915 There is no dwell time limitation for the CN470-510 PHY layer. The *TxParamSetupReq* 916 MAC command is not implemented by CN470-510 devices.
- 917 The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the 918 CN470-510 band:
- 919

DataRate	Configuration	Indicative physical bit rate [bit/sec]	TXPower	Configuration (EIRP)
0	LoRa: SF12 / 125 kHz	250	0	MaxEIRP
1	LoRa: SF11 / 125 kHz	440	1	MaxEIRP – 2dB
2	LoRa: SF10 / 125 kHz	980	2	MaxEIRP – 4dB
3	LoRa: SF9 / 125 kHz	1760	3	MaxEIRP – 6dB
4	LoRa: SF8 / 125 kHz	3125	4	MaxEIRP – 8dB
5	LoRa:SF7 / 125 kHz	5470	5	MaxEIRP – 10dB
6:15	RFU		6	MaxEIRP – 12dB
			7	MaxEIRP – 14dB
			815	RFU

920

Table 41: CN470 Data rate and TX power table

921

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output
 power referenced to an isotropic antenna radiating power equally in all directions and whose

- 924 gain is expressed in dBi.
- 925

By default MaxEIRP is considered to be +19.15dBm. If the end-device cannot achieve
19.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-

928 of-band channel during the end-device commissioning process.

929

930 **2.6.4 CN470-510 JoinResp CFList**

The CN470-510 LoRaWAN does not support the use of the optional CFlist appended to the
 JoinAccept message. If the CFlist is not empty it is ignored by the end-device.

933 2.6.5 CN470-510 LinkAdrReq command

934 For the CN470-510 version the **ChMaskCntl** field of the *LinkADRReq* command has the 935 following meaning:

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
2	Channels 32 to 47
3	Channels 48 to 63
4	Channels 64 to 79
5	Channels 80 to 95
6	All channels ON

ChMaskCntl	ChMask applies to					
	The device should enable all currently defined					
	channels independently of the ChMask field value.					
7	RFU					
Table 42: CN470 ChMaskCntl value table						

938 If the ChMask field value is one of the values meaning RFU, then end-device should reject the command and unset the "Channel mask ACK" bit in its response. 939

940 2.6.6 CN470-510 Maximum payload size

941 The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from 942 the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the 943 optional **FOpt** MAC control field (*N*) is also given for information only. The value of *N* might 944 945 be smaller if the FOpt field is not empty:

DataRate	М	N				
0	59	51				
1	59	51				
2	59	51				
3	123	115				
4	230	222				
5	230 222					
6:15	Not defined					
Table 43: CN470-510 maximum payload size						

946

947 If the end-device will never operate with a repeater then the maximum application payload 948 length in the absence of the optional FOpt control field should be:

949

DataRate	Μ	Ν				
0	59	51				
1	59	51				
2	59	51				
3	123	115				
4	250 242					
5	250	242				
6:15	Not defined					
Table 44 : CN470-510 maximum payload size (not repeater compatible)						

950

951 952

2.6.7 CN470-510 Receive windows

The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows. RX1 Channel Number = Uplink Channel Number modulo 48, for example,

when transmitting channel number is 49, the rx1 channel number is 1.

954 955

953

- 956
- 957 958
- The RX1 window data rate depends on the transmit data rate (see Table below). .
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 505.3 MHz / DR0

959 960

RX1DROffset	0	1	2	3	4	5
Upstream data rate	Downstream data rate in RX1 slot					
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0

RX1DROffset	0	1	2	3	4	5	
Upstream data rate	Downstream data rate in RX1 slot						
DR4	DR4 DR3 DR2 DR1 DR0 DR0						
DR5	DR5	DR4	DR3	DR2	DR1	DR0	
Table 45: CN470-510 downlink RX1 data rate mapping							

963 The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are 964 reserved for future use.

965 **2.6.8 CN470-510 Class B beacon**

966 The beacons are transmitted using the following settings:

	DR	bw					/ith 125kHz			
	CR	1		Coding rate						
	Signal polarity	Non-inverted	A As	s opposed to no inve	ormal down		hich uses			
	frequencies	508.3 to 509.7 with 200kHz st								
967		Table 46 : CN470-510 beacon settings								
968										
969	The downstream ch	nannel used for a	given beau	con is:	_					
970		BeaconChanne	el = [floor((<u>beacon_time</u>)	modulo	8				
971 972	 whereby beau frame 	acon_time is the	integer val	ue of the 4 byt	es "Time"	field of the	e beacon			
973		acon_period is th	e periodicit	v of beacons	. 128 seco	onds				
974	-	or(x) designates	•	•			r equal to x			
975	,	() 5	0	5	-	,	•			
976	Example	e: the first beacor	h will be tra	insmitted on 5	08 3Mhz	the secon	d			
977		5MHz, the 9 th bea								
978	011000.0				agann					
979										
		Beacon channe	el nb	Frequency	[MHz]					
		0		508.3						
		1		508.5						
		2		508.7		_				
		3		508.9		_				
		5		509.1 509.3						
		6		509.5		_				
		7 509.7								
980		L				<u> </u>				
981										
982	The beacon frame content is:									
	Size (bytes)	3 4	2	7 1		2				
	BCNPayload RI	FU Time	CRC	GwSpecific RFU		CRC				

984 2.6.9 CN470-510 Default Settings

985 The following parameters are recommended values for the CN470-510 band.

986	RECEIVE_DELAY1	1 s
987	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
988	JOIN_ACCEPT_DELAY1	5 s
989	JOIN_ACCEPT_DELAY2	6 s
990	MAX_FCNT_GAP	16384
991	ADR_ACK_LIMIT	64
992	ADR_ACK_DELAY	32
993	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

994 If the actual parameter values implemented in the end-device are different from those default 995 values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 996 parameters must be communicated to the network server using an out-of-band channel 997 during the end-device commissioning process. The network server may not accept 998 parameters different from those default values.

999 **2.7 AS923MHz ISM Band**

1000 2.7.1 AS923 Preamble Format

- 1001 The following synchronization words should be used:
- 1002

Modulation	Sync word	Preamble length		
LORA	0x34	8 symbols		
GFSK	0xC194C1	5 bytes		
	Table 47: AS923 synch words			

1003

1004 **2.7.2 AS923 ISM Band channel frequencies**

- 1005 This section applies to regions where the frequencies [923...923.5MHz] are comprised in the 1006 ISM band, which is the case for the following countries:

1017The network channels can be freely attributed by the network operator. However the two1018following default channels must be implemented in every AS923MHz end-device. Those1019channels are the minimum set that all network gateways should always be listening on.

1020

 Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR0 to DR5 / 0.3-5 kbps	2	< 1%

1021

Table 48: AS923 default channels

1022 Those default channels must be implemented in every end-device and cannot be modified 1023 through the *NewChannelReq* command and guarantee a minimal common channel set 1024 between end-devices and network gateways.

1025 AS923MHz ISM band end-devices should use the following default parameters

1026 • Default EIRP: 16 dBm

AS923MHz end-devices should feature a channel data structure to store the parameters of
 at least 16 channels. A channel data structure corresponds to a frequency and a set of data
 rates usable on this frequency.

1030 The following table gives the list of frequencies that should be used by end-devices to 1031 broadcast the JoinReg message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR2	2	< 1%

1032

Table 49: AS923 JoinReg Channel List

1033 The default JoinReq Data Rate is DR2 (SF10/125KHz), this setting ensures that end-devices 1034 are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified 1035 to the end-device by the network server via the MAC command "TxParamSetupReq". The JoinReg message transmit duty-cycle shall follow the rules described in chapter 1036 "Retransmissions back-off" of the LoRaWAN specification document. 1037

1038

1039 2.7.3 AS923 Data Rate and End-point Output Power encoding

The "TxParamSetupReq/Ans" MAC command MUST be implemented by the AS923 1040 1041 devices.

- The following encoding is used for Data Rate (DR) in the AS923 band: 1042
- 1043

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
815	RFU	
	Table 50: Data rate tabl	0

1044

Table 50: Data rate table

1045

1046 The TXPower table indicates power levels relative to the Max EIRP level of the end-device,

as per the following table: 1047

1048

TXPower	Configuration (EIRP)
0	MaxEIRP
1	MaxEIRP – 2dB
2	MaxEIRP – 4dB
3	MaxEIRP – 6dB
4	MaxEIRP – 8dB
5	MaxEIRP – 10dB
6	MaxEIRP – 12dB
7	MaxEIRP – 14dB
815	RFU
Table 51	: TxPower table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output
 power referenced to an isotropic antenna radiating power equally in all directions and whose
 gain is expressed in dBi.

By default Max EIRP shall be 16dBm. The Max EIRP can be modified by the network server
through the *TxParamSetupReq* MAC command and should be used by both the enddevice and the network server once *TxParamSetupReq* is acknowledged by the device via *TxParamSetupAns*.

1058

1059 2.7.4 AS923 JoinAccept CFList

1060 The AS923 LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in 1061 the JoinAccept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven
whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these
channels are usable for DR0 to DR5 125 KHz LoRa modulation.

Size (bytes)	3	3	3	3	3	1
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 915 and 928MHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

1072 2.7.5 AS923 LinkAdrReq command

1073 The AS923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 1074 0 the ChMask field individually enables/disables each of the 16 channels.

1075

ChMaskCntl	ChMask applies to					
0	Channels 1 to 16					
1	RFU					
4	RFU					
5	RFU					
6	All channels ON					
	The device should enable all currently					
	defined channels independently of the					
	ChMask field value.					
7	RFU					
	Table 52: ChMeekCatl value table					

1076

- Table 52: ChMaskCntl value table
- 1077 If the ChMask field value is one of values meaning RFU, the end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

1080 **2.7.6 AS923 Maximum payload size**

1081 The maximum **MACPayload** size length (*M*) is given by the following table for both dwell 1082 time configurations: No Limit and 400ms. It is derived from the PHY layer limitation 1083 depending on the effective modulation rate used taking into account a possible repeater 1084 encapsulation layer.

1085

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC Payload Size (M)			
	UplinkDwellTime = 0	UplinkDwellTime = 1	DownlinkDwellTime = 0	DownlinkDwellTime = 1		
0	59	N/A	59	 N/A		
1	59	N/A	59	N/A		
2	59	19	59	19		
3	123	61	123	61		
4	230	133	230	133		
5	230	250	230	250		
6	230	250	230	250		
7	230	250	230	250		
8:15	RFU		RI	Ū		

1086

Table 53:	AS923	maximum	payload size

1087 If the end-device will never operate with a repeater then the maximum MAC payload length 1088 should be:

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC Payload Size (M)		
	UplinkDwellTime = 0	UplinkDwellTime = 1	DownlinkDwellTime = 0	DownlinkDwellTim e = 1	
0	59	N/A	59	N/A	
1	59	N/A	59	N/A	
2	59	19	59	19	
3	123	61	123	61	
4	250	133	250	133	
5	250	250	250	250	
6	250	250	250	250	
7	250	250	250	250	
8:15	RI	=U	RFU		

1089

Table 54: AS923 maximum payload size (not repeater compatible)

1090 The maximum application payload length in the absence of the optional **FOpt** control field 1091 (*N*) is eight bytes lower than the MACPayload value in the above table. The value of N might 1092 be smaller if the **FOpt** field is not empty.

1093

1094 2.7.7 AS923 Receive windows

1095 The RX1 receive window uses the same channel than the preceding uplink. The data rate is 1096 a function of the uplink data rate and the RX1DROffset as following:

1097 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (MinDR, Upstream data rate – 1098 Effective_RX1DROffset))

1099 MinDR depends on the DownlinkDwellTime bit sent to the device in the *TxParamSetupReq* 1100 command:

- Case DownlinkDwellTime = 0 (No limit): MinDR = 0
- Case DownlinkDwellTime = 1 (400ms): MinDR = 2
- 1103 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

- 1104 Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream 1105 data rate.
- 1106 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 1107 923.2 MHz / DR2 (SF10/125KHz).
- 1108

1109 **2.7.8 AS923 Class B beacon and default downlink channel**

1110 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

1111

Table 55 : A	S923 beacon	settings
--------------	-------------	----------

1112 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- 1113 The beacon default broadcast frequency is 923.4MHz.
- 1114 The class B default downlink pingSlot frequency is 923.4MHz
- 1115

1116 2.7.9 AS923 Default Settings

1117 The following parameters are recommended values for the AS923MHz band.

1118	RECEIVE_DELAY1	1 s
1119	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
1120	JOIN_ACCEPT_DELAY1	5 s
1121	JOIN_ACCEPT_DELAY2	6 s
1122	MAX_FCNT_GAP	16384
1123	ADR_ACK_LIMIT	64
1124	ADR_ACK_DELAY	32
1125	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

1126 If the actual parameter values implemented in the end-device are different from those default 1127 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1128 RECEIVE_DELAY2 latency), those parameters must be communicated to the network 1129 server using an out-of-band channel during the end-device commissioning process. The 1130 network server may not accept parameters different from those default values.

1131 2.8 South Korea 920-923MHz ISM Band

1132 2.8.1 KR920-923 Preamble Format

- 1133 The following synchronization words should be used:
- 1134

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

1135 **2.8.2 KR920-923 ISM Band channel frequencies**

1136 The center frequency, bandwidth and maximum EIRP output power for the South Korea 1137 RFID/USN frequency band are already defined by Korean Government. Basically Korean

1138 Government allocated LPWA based IoT network frequency band from 920.9 to 923.3MHz.

Government allocated LPVVA based for network frequency band from 920.9 to 925.3M

1139

Center frequency			
(MHz)	(kHz)	For end-device	For gateway
920.9	125	10	23
921.1	125	10	23
921.3	125	10	23
921.5	125	10	23
921.7	125	10	23
921.9	125	10	23
922.1	125	14	23
922.3	125	14	23
922.5	125	14	23
922.7	125	14	23
922.9	125	14	23
923.1	125	14	23
923.3	125	14	23

1140

 Table 56: Center frequency, bandwidth, maximum EIRP output power table

1141 The three following default channels (922.1, 922.3 and 922.5MHz / DR0 to DR5) determined 1142 by the network operator from the set of available channels as defined by the South Korean 1143 regulation must be implemented in every KR920-923MHz end-device, and cannot be 1144 alterable by the *NewChannelReq* command. Those channels are the minimum set that all 1145 network gateways should always be listening on to guarantee a minimal common channel 1146 set between end-devices and network gateways.

1147

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50		

1148

Table 57: KR920-923 default channels

In order to access the physical medium the South Korea regulations impose some
restrictions. The South Korea regulations allow the choice of using either a duty-cycle
limitation or a so-called Listen Before Talk Adaptive Frequency Agility (LBT AFA)
transmissions management. The current LoRaWAN specification for the KR920-923 ISM

- band exclusively uses LBT channel access rule to maximize MACPayload size length andcomply with the South Korea regulations.
- 1155 KR920-923MHz ISM band end-devices should use the following default parameters
- Default EIRP output power for end-device(920.9~921.9MHz): 10 dBm
 - Default EIRP output power for end-device(922.1~923.3MHz): 14 dBm
 - Default EIRP output power for gateway: 23 dBm

1159 KR920-923MHz end-devices should be capable of operating in the 920 to 923MHz 1160 frequency band and should feature a channel data structure to store the parameters of at 1161 least 16 channels. A channel data structure corresponds to a frequency and a set of data 1162 rates usable on this frequency.

1163 The following table gives the list of frequencies that should be used by end-devices to 1164 broadcast the JoinReq message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50		

1165

1157 1158

Table 58: KR920-923 JoinReq Channel List

1166 **2.8.3 KR920-923 Data Rate and End-device Output Power encoding**

1167 There is no dwell time limitation for the KR920-923 PHY layer. The *TxParamSetupReq* 1168 MAC command is not implemented in KR920-923 devices.

1169 The following encoding is used for Data Rate (DR), and EIRP Output Power (TXPower) in 1170 the KR920-923 band:

1171

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
615	RFU	

Table 59: TX Data rate table

1172 1173

> **TXPower** Configuration (EIRP) MaxEIRP 0 MaxEIRP - 2dB 1 2 MaxEIRP - 4dB MaxEIRP - 6dB 3 MaxEIRP - 8dB 4 MaxEIRP – 10dB 5 MaxEIRP – 12dB 6 MaxEIRP - 14dB 7 RFU 8..15

Table 60: TX power table

- 1176 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output
- 1177 power referenced to an isotropic antenna radiating power equally in all directions and whose 1178 gain is expressed in dBi.
- 1179
- 1180 By default MaxEIRP is considered to be +14dBm. If the end-device cannot achieve 14dBm
- 1181 EIRP, the MaxEIRP should be communicated to the network server using an out-of-band
- 1182 channel during the end-device commissioning process.
- 1183 When the device transmits in a channel whose frequency is <922MHz, the transmit power
- 1184 SHALL be limited to +10dBm EIRP even if the current transmit power level set by the
- 1185 network server is higher.

1186 **2.8.4 KR920-923 JoinAccept CFList**

1187 The KR920-923 ISM band LoRaWAN implements an optional **channel frequency list** 1188 (CFlist) of 16 octets in the JoinAccept message.

1189 In this case the CFList is a list of five channel frequencies for the channels four to eight 1190 whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these 1191 channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is 1192 followed by a single RFU octet for a total of 16 octets.

1193

Size (bytes)	3	3	3	3	3	1
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

1201 2.8.5 KR920-923 LinkAdrReq command

1202 The KR920-923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** 1203 field is 0 the ChMask field individually enables/disables each of the 16 channels.

1204

ChMaskCntl	ChMask applies to			
0	Channels 1 to 16			
1	RFU			
4	RFU			
5	RFU			
6	All channels ON			
	The device should enable all currently defined			
	channels independently of the ChMask field value.			
7	RFU			
	Table 61: ChMaskCntl value table			

1205 1206

1207 If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject 1208 the command and unset the "**Channel mask ACK**" bit in its response.

1209 **2.8.6 KR920-923 Maximum payload size**

The maximum **MACPayload** size length (*M*) is given by the following table for the regulation of dwell time; less than 4 sec with LBT. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

1216

M N		
59	51	
59	51	
59	51	
123	115	
230	222	
230	222	
Not defined		
	59 59 59 123 230 230	

1217

Table 62: KR920-923 maximum payload size

1218 If the end-device will never operate with a repeater then the maximum application payload

1219 length in the absence of the optional **FOpt** control field should be:

1220

DataRate	Μ	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6:15	Not defined		

1221

Table 63 : KR920-923 maximum payload size (not repeater compatible)

1222

1223 2.8.7 KR920-923 Receive windows

1224 The RX1 receive window uses the same channel than the preceding uplink. The data rate is 1225 a function of the uplink data rate and the RX1DROffset as given by the following table. The 1226 allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are 1227 reserved for future use.

1228

RX1DROffset Upstream data rate	0	1 Dow	2 Instream data	3 a rate in RX1	4 slot	5
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
	Table C4 + K	D000 000 dow	unlink DV1 date	, note meaning of		

1229

Table 64 : KR920-923 downlink RX1 data rate mapping

1230 The RX2 receive window uses a fixed frequency and data rate. The default parameters are 1231 921.90MHz / DR0 (SF12, 125 kHz).

1232 **2.8.8 KR920-923 Class B beacon and default downlink channel**

1233 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted signal polarity		
Table 65 : KR920-923 beacon settings				

1234 1235

1236 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1237 The beacon default broadcast frequency is 923.1MHz.

1238 The class B default downlink pingSlot frequency is 923.1MHz

1239

1240 2.8.9 KR920-923 Default Settings

1241 The following parameters are recommended values for the KR920-923Mhz band.

RECEIVE DELAY1 1242 1 s 1243 **RECEIVE_DELAY2** 2 s (must be RECEIVE_DELAY1 + 1s) 1244 JOIN ACCEPT DELAY1 5 s JOIN_ACCEPT_DELAY2 1245 6 s 1246 MAX_FCNT_GAP 16384 1247 ADR_ACK_LIMIT 64 1248 ADR ACK DELAY 32 1249 ACK TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1250 If the actual parameter values implemented in the end-device are different from those default 1251 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1252 RECEIVE_DELAY2 latency), those parameters must be communicated to the network 1253 server using an out-of-band channel during the end-device commissioning process. The 1254 network server may not accept parameters different from those default values.

1256 **2.9 India 865-867 MHz ISM Band**

1257 **2.9.1 INDIA 865-867 Preamble Format**

1258 The following synchronization words should be used:

1259

	Modulation	Sync word Prea	mble length				
	LORA	0x34	8 symbols				
-	GFSK	0xC194C1	5 bytes				
	Table CC. India OCE OCZ armsh words						

1260

Table 66: India 865-867 synch words

1261 2.9.2 INDIA 865-867 ISM Band channel frequencies

1262 This section applies to the Indian sub-continent.

1263 The network channels can be freely attributed by the network operator. However the three 1264 following default channels must be implemented in every India 865-867MHz end-device. 1265 Those channels are the minimum set that all network gateways should always be listening 1266 on.

1267

Modulation	Bandwidth	Channel	FSK Bitrate or	Nb
	[kHz]	Frequency [MHz]	LoRa DR / Bitrate	Channels
LoRa	125	865.0625 865.4025 865.985	DR0 to DR5 / 0.3-5 kbps	3

1268

Table 67: INDIA 865-867 default channels

1269 End-devices should be capable of operating in the 865 to 867 MHz frequency band and 1270 should feature a channel data structure to store the parameters of at least 16 channels. A 1271 channel data structure corresponds to a frequency and a set of data rates usable on this 1272 frequency.

1273 The first three channels correspond to 865.0625, 865.4025, and 865.985 MHz / DR0 to DR5 1274 and must be implemented in every end-device. Those default channels cannot be modified 1275 through the **NewChannelReq** command and guarantee a minimal common channel set 1276 between end-devices and network gateways.

1277 The following table gives the list of frequencies that should be used by end-devices to 1278 broadcast the JoinReq message. The JoinReq message transmit duty-cycle shall follow the 1279 rules described in chapter "Retransmissions back-off" of the LoRaWAN specification 1280 document. 1281

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	865.0625 865.4025	DR0 – DR5 / 0.3-5 kbps	3
Lond		865.9850	, 0.0 0 1000	

¹²⁸²

1283 2.9.3 INDIA 865-867 Data Rate and End-device Output Power Encoding

1284 There is no dwell time or duty-cycle limitation for the INDIA 865-867 PHY layer. The 1285 *TxParamSetupReq* MAC command is not implemented by INDIA 865-867 devices.

Table 68: INDIA 865-867 JoinReq Channel List

1286 The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) 1287 in the INDIA 865-867 band:

1288

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	RFU	RFU
7	FSK: 50 kbps	50000
815	RFU	

1289 1290 Table 69: TX Data rate table

1291 The TXPower table indicates power levels relative to the Max EIRP level of the end-device,

1292 as per the following table:

1293

TXPower	Configuration (EIRP)			
0	MaxEIRP			
1	MaxEIRP – 2dB			
2	MaxEIRP – 4dB			
3	MaxEIRP – 6dB			
4	MaxEIRP – 8dB			
5	MaxEIRP – 10dB			
6	MaxEIRP – 12dB			
7	MaxEIRP – 14dB			
8	MaxEIRP – 16dB			
9	MaxEIRP – 18dB			
10	MaxEIRP – 20dB			
1115	RFU			
Table 70: TxPower table				

1294 1295

1296 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output 1297 power referenced to an isotropic antenna radiating power equally in all directions and whose 1298 gain is expressed in dBi.

By default MaxEIRP is considered to be 30dBm. If the end-device cannot achieve 30dBm BIRP, the Max EIRP should be communicated to the network server using an out-of-band

- 1301 channel during the end-device commissioning process.
- 1302

1303 2.9.4 INDIA 865-867 JoinAccept CFList

1304 The India 865-867 ISM band LoRaWAN implements an optional **channel frequency list** 1305 (CFlist) of 16 octets in the JoinAccept message.

1306 In this case the CFList is a list of five channel frequencies for the channels four to eight 1307 whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these

channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies isfollowed by a single RFU octet for a total of 16 octets.

1310

Size (bytes)	3	3	3	3	3	1
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	RFU

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

1318 2.9.5 INDIA 865-867 LinkAdrReq command

1319The INDIA 865-867 LoRaWAN only supports a maximum of 16 channels. When1320ChMaskCntl field is 0 the ChMask field individually enables/disables each of the 161321channels.

1322

ChMaskCntl	ChMask applies to					
0	Channels 1 to 16					
1	RFU					
4	RFU					
5	RFU					
6	All channels ON					
	The device should enable all currently defined					
	channels independently of the ChMask field					
	value.					
7	RFU					
	Table 71: ChMaskCntl value table					

1323

1324 If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject 1325 the command and unset the "**Channel mask ACK**" bit in its response.

1326 2.9.6 INDIA 865-867 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

1333

Table 72: INDIA 865-867 maximum payload size

1334 If the end-device will never operate with a repeater then the maximum application payload
1335 length in the absence of the optional **FOpt** control field should be:
1336

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not d	efined

1337

Table 73 : INDIA 865-867 maximum payload size (not repeater compatible)

1338 **2.9.7 INDIA 865-867 Receive windows**

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:7] range. Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1343 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

1344 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (0, Upstream data rate – 1345 Effective_RX1DROffset))

1346The RX2 receive window uses a fixed frequency and data rate. The default parameters are1347866.550 MHz / DR2 (SF10, 125 kHz).

1348 **2.9.8 INDIA 865-867 Class B beacon and default downlink channel**

1349 The beacons are transmitted using the following settings

		inverted signal polarity
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
CR	1	Coding rate = $4/5$
		125 kHz BW
DR	4	Corresponds to SF8 spreading factor with

1350

1351 The beacon frame content is:

Size (bytes)	1	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

¹³⁵² The beacon default broadcast frequency is 866.550MHz.

¹³⁵³ The class B default downlink pingSlot frequency is 866.550MHz

1355 2.9.9 INDIA 865-867 Default Settings

1356 The following parameters are recommended values for the INDIA 865-867MHz band.

1357 1358 1359 1360 1361 1362 1363 1364 1365	RECEIVE_DELAY1 RECEIVE_DELAY2 JOIN_ACCEPT_DELAY1 JOIN_ACCEPT_DELAY2 MAX_FCNT_GAP ADR_ACK_LIMIT ADR_ACK_DELAY	1 s 2 s (must be RECEIVE_DELAY1 + 1s) 5 s 6 s 16384 64 32 2 ± 1 s (random delay between 1 and 3 seconds)
1365	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

- 1366 If the actual parameter values implemented in the end-device are different from those default 1367 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1368 RECEIVE_DELAY2 latency), those parameters must be communicated to the network 1369 server using an out-of-band channel during the end-device commissioning process. The 1370 network server may not accept parameters different from those default values. 1371
- 1372

Revisions 1373 3

1374 3.1 Revision A

- Initial revision, the regional parameters were extracted from the LoRaWANV1.0.1 1375 • 1376 and the Asia/PAC regional cluster definition was added
- The ADR command for the US902-928 physical layer was amended to include ADR 1377 • 1378 MAC command blocks
- Added KR920-923 frequency band support 1379 •
- 1380 Modified EU868 PHY layer power limit from 14dBm EIRP to 1dBm ERP •

3.2 Revision B 1381

1382 expressed all powers either as EIRP or as conducted power depending on regions • 1383 Modified SF of US900 classB beacon to SF12/500kHz 1384 Added for each region whether TxParamSetupReg must be supported or not • Added India frequency plan 1385 • Added precision regarding FCC profiles that must be supported by US900 devices 1386 • Added missing table in 2.6.6 1387 • Specified that device must limit power to 10dBm EIRP at frequencies lower than 1388 • 922MHz in KR920 2.8.4 1389 Added signal polarity in india classB beacon definition 1390 • Corrected Missing field names in classB beacon of EU433 1391 • 1392 Update of the AU915 available data rates : SF12 and SF11 are now allowed • Update of INDIA865 available data rate and TX power definition 1393 • 1394

Bibliography 1395 4

4.1 References 1396

1397

[LORAWAN] LoRaWAN Specification, V1.0.2, the LoRa Alliance, October 2016. 1398

1399 **5 NOTICE OF USE AND DISCLOSURE**

1400 Copyright © LoRa Alliance, Inc. (2015). All Rights Reserved.

1401 The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and 1402 disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and 1403 Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including
without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa
Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing
to identify any or all such third party intellectual property rights.

1408This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE1409DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY1410WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD1411PARTIES (INCLUDING WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING1412PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF1413MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

1414 IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS
1415 OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR
1416 EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR
1417 IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF
1418 ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

- 1419 The above notice and this paragraph must be included on all copies of this document that are made.
- 1420 LoRa Alliance, Inc.
- 1421 2400 Camino Ramon, Suite 375
- 1422 San Ramon, CA 94583
- 1423 Note: All Company, brand and product names may be trademarks that are the sole property of their respective
- 1424 owners.