/******************************************************************************* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman Copyright (c) 2018 Terry Moore, MCCI Permission is hereby granted, free of charge, to anyone obtaining a copy of this document and accompanying files, to do whatever they want with them without any restriction, including, but not limited to, copying, modification and redistribution. NO WARRANTY OF ANY KIND IS PROVIDED. This example sends a valid LoRaWAN packet with payload "Hello, world!", using frequency and encryption settings matching those of the The Things Network. This uses OTAA (Over-the-air activation), where where a DevEUI and application key is configured, which are used in an over-the-air activation procedure where a DevAddr and session keys are assigned/generated for use with all further communication. Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in g1, 0.1% in g2), but not the TTN fair usage policy (which is probably violated by this sketch when left running for longer)! To use this sketch, first register your application and device with the things network, to set or generate an AppEUI, DevEUI and AppKey. Multiple devices can use the same AppEUI, but each device has its own DevEUI and AppKey. Do not forget to define the radio type correctly in config.h. *******************************************************************************/ #include #include #include #include #include #include #include // // For normal use, we require that you edit the sketch to replace FILLMEIN // with values assigned by the TTN console. However, for regression tests, // we want to be able to compile these scripts. The regression tests define // COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non- // working but innocuous value. // #ifdef COMPILE_REGRESSION_TEST # define FILLMEIN 0 #else # warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!" # define FILLMEIN 0(#dont edit this, edit the lines that use FILLMEIN) #endif #ifndef CFG_eu868 #define CFG_eu868 #endif // This EUI must be in little-endian format, so least-significant-byte // first. When copying an EUI from ttnctl output, this means to reverse // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, // 0x70. static const u1_t PROGMEM APPEUI[8] = { 0x70, 0xB3, 0xD5, 0x7E, 0xD0, 0x02, 0x70, 0x87 }; void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8); } // This should also be in little endian format, see above. static const u1_t PROGMEM DEVEUI[8] = { 0x00, 0x28, 0x38, 0xE2, 0xD3, 0xB1, 0x12, 0xBB }; void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8); } // This key should be in big endian format (or, since it is not really a // number but a block of memory, endianness does not really apply). In // practice, a key taken from ttnctl can be copied as-is. static const u1_t PROGMEM APPKEY[16] = { 0xA0, 0x50, 0x57, 0xA4, 0xA9, 0x63, 0xDC, 0x02, 0x4E, 0xAA, 0x02, 0xF0, 0xF5, 0xEB, 0xE3, 0xA7 }; void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16); } static uint8_t btn_activated[1] = {0x01}; static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 60; // Pin mapping const lmic_pinmap lmic_pins = { .nss = 9, .rxtx = LMIC_UNUSED_PIN, .rst = 8, .dio = {2, 3, LMIC_UNUSED_PIN}, }; //------ Added ---------------- #define LED_YELLOW 13 #define LED_GREEN 12 #define DHT_PIN 10 #define BTN_PIN 11 // DHT11 or DHT22 #define DHTTYPE DHT11 // Initialize dht DHT dht(DHT_PIN, DHTTYPE); int buttonState = 0; // current state of the button int lastButtonState = 0; // previous state of the button //----------------------------- void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch (ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); { u4_t netid = 0; devaddr_t devaddr = 0; u1_t nwkKey[16]; u1_t artKey[16]; LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey); Serial.print("netid: "); Serial.println(netid, DEC); Serial.print("devaddr: "); Serial.println(devaddr, HEX); Serial.print("artKey: "); for (int i = 0; i < sizeof(artKey); ++i) { Serial.print(artKey[i], HEX); } Serial.println(""); Serial.print("nwkKey: "); for (int i = 0; i < sizeof(nwkKey); ++i) { Serial.print(nwkKey[i], HEX); } Serial.println(""); } // Disable link check validation (automatically enabled // during join, but because slow data rates change max TX // size, we don't use it in this example. LMIC_setLinkCheckMode(0); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_RFU1: || Serial.println(F("EV_RFU1")); || break; */ case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.print(F("Received ")); Serial.print(LMIC.dataLen); Serial.println(F(" bytes of payload")); //------ Added ---------------- if (LMIC.dataLen == 1) { uint8_t result = LMIC.frame[LMIC.dataBeg + 0]; if (result == 0) { Serial.println("RESULT 0"); digitalWrite(LED_YELLOW, LOW); digitalWrite(LED_GREEN, LOW); } if (result == 1) { Serial.println("RESULT 1"); digitalWrite(LED_YELLOW, HIGH); digitalWrite(LED_GREEN, LOW); } if (result == 2) { Serial.println("RESULT 2"); digitalWrite(LED_YELLOW, LOW); digitalWrite(LED_GREEN, HIGH); } if (result == 3) { Serial.println("RESULT 3"); digitalWrite(LED_YELLOW, HIGH); digitalWrite(LED_GREEN, HIGH); } } Serial.println(); //----------------------------- } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_SCAN_FOUND: || Serial.println(F("EV_SCAN_FOUND")); || break; */ case EV_TXSTART: Serial.println(F("EV_TXSTART")); break; default: Serial.print(F("Unknown event: ")); Serial.println((unsigned) ev); break; } } void do_send(osjob_t* j) { // Check if there is not a current TX/RX job running+++ if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { uint32_t humidity = dht.readHumidity(false) * 100; uint32_t temperature = dht.readTemperature(false) * 100; Serial.println("Humidity: " + String(humidity)); Serial.println("Temperature: " + String(temperature)); byte payload[4]; payload[0] = highByte(humidity); payload[1] = lowByte(humidity); payload[2] = highByte(temperature); payload[3] = lowByte(temperature); //Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, payload, sizeof(payload)-1, 0); Serial.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. } void setup() { Serial.begin(9600); Serial.println(F("Starting")); //------ Added ---------------- pinMode(LED_YELLOW, OUTPUT); pinMode(LED_GREEN, OUTPUT); pinMode(BTN_PIN, INPUT); digitalWrite(BTN_PIN, LOW); #if defined(CFG_eu868) // // Set up the channels used by the Things Network, which corresponds // // to the defaults of most gateways. Without this, only three base // // channels from the LoRaWAN specification are used, which certainly // // works, so it is good for debugging, but can overload those // // frequencies, so be sure to configure the full frequency range of // // your network here (unless your network autoconfigures them). // // Setting up channels should happen after LMIC_setSession, as that // // configures the minimal channel set. // // NA-US channels 0-71 are configured automatically LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band // // TTN defines an additional channel at 869.525Mhz using SF9 for class B // // devices' ping slots. LMIC does not have an easy way to define set this // // frequency and support for class B is spotty and untested, so this // // frequency is not configured here. #elif defined(CFG_us915) // // NA-US channels 0-71 are configured automatically // // but only one group of 8 should (a subband) should be active // // TTN recommends the second sub band, 1 in a zero based count. // // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json LMIC_selectSubBand(1); #endif dht.begin(); //----------------------------- #ifdef VCC_ENABLE // For Pinoccio Scout boards pinMode(VCC_ENABLE, OUTPUT); digitalWrite(VCC_ENABLE, HIGH); delay(1000); #endif // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); LMIC_setLinkCheckMode(1); LMIC.dn2Dr = DR_SF9; LMIC_setDrTxpow(DR_SF7,14); LMIC_setAdrMode(1); LMIC_setClockError( MAX_CLOCK_ERROR * 1 / 100 ); // Start job (sending automatically starts OTAA too) do_send(&sendjob); } void loop() { //------ Added ---------------- // read the state of the button value: buttonState = digitalRead(BTN_PIN); // compare the buttonState to its previous state if (buttonState != lastButtonState) { if (buttonState == HIGH) { // if the current state is HIGH then the button went from off to on: LMIC_setTxData2(1, btn_activated, sizeof(btn_activated), 0); Serial.println(F("Button On")); } else { // if the current state is LOW then the button went from on to off: Serial.println(F("Button Off")); } // Delay a little bit to avoid bouncing delay(50); } // save the current state as the last state, for next time through the loop lastButtonState = buttonState; //----------------------------- os_runloop_once(); }