#include #include #include #include "LowPower.h" #include "CayenneLPP.h" CayenneLPP lpp(51); static const PROGMEM u1_t NWKSKEY[16] = { // MY OWN PASS }; // LoRaWAN AppSKey, application session key (formato MSB) // This is the default Semtech key, which is used by the early prototype TTN // network. static const u1_t PROGMEM APPSKEY[16] = { // MY OWN PASS }; // LoRaWAN end-device address (DevAddr) (formato MSB) static const u4_t DEVADDR = // MY OWN PASS ; // <-- Change this address for every node! // Schedule TX in minutes. const unsigned TX_INTERVAL = 1; // Sensors present in hardware... //#define SHT21 //#define DS18B20 //#define SUNRISE //***************************************************************************************************************************************** //***************************************************************************************************************************************** //#define DEVICE_ID 6 // 5 = LoRaSDL // Payload structure by Ray... /* typedef struct { byte device_id = DEVICE_ID; int status; // bit 0: SHT21 temperature & humidity sensor OK or present // bit 1: DS18B20 temperature sensor OK or present // bit 2: sunrise CO2 sensor OK or present // ... // bit 15: device timeout int temperature; // x10 - ºC int humidity; // x1 - % int dew_point; // x10 - ºC int co2; // x1 - ppm int dipswitch; // x1 - binary code int battery; // x100 - V } Payload; Payload theData;*/ static uint8_t theData[] = "Hello, world!"; //***************************************************************************************************************************************** //***************************************************************************************************************************************** // These callbacks are only used in over-the-air activation, so they are // left empty here (we cannot leave them out completely unless // DISABLE_JOIN is set in config.h, otherwise the linker will complain). void os_getArtEui (u1_t* buf) { } void os_getDevEui (u1_t* buf) { } void os_getDevKey (u1_t* buf) { } static osjob_t sendjob; boolean end_tx = false; // RFM95 pin mapping const lmic_pinmap lmic_pins = { .nss = 10, .rxtx = LMIC_UNUSED_PIN, .rst = LMIC_UNUSED_PIN, .dio = {2, 5, LMIC_UNUSED_PIN}, }; void setup() { while (!Serial); Serial.begin(9600); Serial.println(F("Starting")); pinMode(13, OUTPUT); // Payload init... /* theData.dew_point = 0; theData.co2 = 0; theData.temperature = 0; theData.humidity = 0; theData.status = 0; theData.dipswitch = 0;*/ // lmic library init... lmic_init(); // Start job do_send(&sendjob); } void loop() { os_runloop_once(); if (end_tx) { end_tx = false; //led_test_off(); delay(100); // A echar una cabezada x minutos... duerme(TX_INTERVAL); //LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); //LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); // lmic library init... lmic_init(); do_send(&sendjob); } } // Send payload... void do_send(osjob_t* j) { char* ptStr; // Enciende led de test para ver cuando tiempo está despierto el sensor... //led_test_on(); // Lee sensores... //lee_sensores(); //***************************************************************************************************************************************** // CAYENNE //***************************************************************************************************************************************** if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { // Prepare upstream data transmission at the next possible time. printCayenne(); LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0); Serial.println(F("Packet queued")); } //***************************************************************************************************************************************** //***************************************************************************************************************************************** /* // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { // Prepare upstream data transmission at the next possible time. ptStr = reinterpret_cast(&theData); LMIC_setTxData2(1, ptStr, sizeof(theData), 0); Serial.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. */ //***************************************************************************************************************************************** //***************************************************************************************************************************************** } void duerme(int minutos) { int m = (minutos * 60) / 8; int n; for (n = 0; n < m; n++) { LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); } } void forceTxSingleChannelDr() { int channel = 0; int dr = DR_SF7; for (int i = 0; i < 9; i++) { // For EU; for US use i<71 if (i != channel) { LMIC_disableChannel(i); } } // Set data rate (SF) and transmit power for uplink LMIC_setDrTxpow(dr, 14); } void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch (ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); break; case EV_RFU1: Serial.println(F("EV_RFU1")); break; case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.println(F("Received ")); Serial.println(LMIC.dataLen); Serial.println(F(" bytes of payload")); } if (LMIC.dataLen == 1) { uint8_t result = LMIC.frame[LMIC.dataBeg + 0]; if (result == 0) { Serial.println("RESULT 0"); digitalWrite(13,LOW); } if (result == 1) { Serial.println("RESULT 1"); digitalWrite(13, HIGH); } if (result == 2) { Serial.println("RESULT 2"); } if (result == 3) { Serial.println("RESULT 3"); } } end_tx = true; break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; default: Serial.println(F("Unknown event")); break; } } void lmic_init(void) { // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); // Set static session parameters. Instead of dynamically establishing a session // by joining the network, precomputed session parameters are be provided. #ifdef PROGMEM // On AVR, these values are stored in flash and only copied to RAM // once. Copy them to a temporary buffer here, LMIC_setSession will // copy them into a buffer of its own again. uint8_t appskey[sizeof(APPSKEY)]; uint8_t nwkskey[sizeof(NWKSKEY)]; memcpy_P(appskey, APPSKEY, sizeof(APPSKEY)); memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY)); LMIC_setSession (0x1, DEVADDR, nwkskey, appskey); #else // If not running an AVR with PROGMEM, just use the arrays directly LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY); #endif #if defined(CFG_eu868) // Set up the channels used by the Things Network, which corresponds // to the defaults of most gateways. Without this, only three base // channels from the LoRaWAN specification are used, which certainly // works, so it is good for debugging, but can overload those // frequencies, so be sure to configure the full frequency range of // your network here (unless your network autoconfigures them). // Setting up channels should happen after LMIC_setSession, as that // configures the minimal channel set. // NA-US channels 0-71 are configured automatically LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band // TTN defines an additional channel at 869.525Mhz using SF9 for class B // devices' ping slots. LMIC does not have an easy way to define set this // frequency and support for class B is spotty and untested, so this // frequency is not configured here. #elif defined(CFG_us915) // NA-US channels 0-71 are configured automatically // but only one group of 8 should (a subband) should be active // TTN recommends the second sub band, 1 in a zero based count. // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json LMIC_selectSubBand(1); #endif // Disable link check validation LMIC_setLinkCheckMode(0); // TTN uses SF9 for its RX2 window. LMIC.dn2Dr = DR_SF9; // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library) //LMIC_setDrTxpow(DR_SF7,14); // Define the single channel and data rate (SF) to use forceTxSingleChannelDr(); LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100); } void printCayenne() { bool digital; int analog; lpp.reset(); lpp.addTemperature(1, 25); lpp.addAnalogInput(2, 39); lpp.addRelativeHumidity(3, 20); lpp.addBarometricPressure(4, 15); lpp.addLuminosity(5, 10); lpp.addDigitalOutput(6, 13); lpp.addAnalogOutput(7, 120); Serial.print("digital: "); Serial.print(digital); Serial.print(" "); Serial.print("Analog: "); Serial.println(analog); Serial.println(LMIC.dataLen); }