Is there any "increase antenna gain" on arduino LMIC sketch?

Hi,

I’m testing LoRa node range and RSSI with arduino UNO R3 and NiceRF LoRa V2.0 SX1276 915MHz.
I’ve tried to change many antenna such as

  • spring antenna 2.15 dBi gain
  • 6 cm antenna 2 dBi gain
  • 15 cm antenna 3 dBi gain
  • 26 cm antenna 3.5 dBi gain

and the result is make sense, the better and bigger antenna the better range and RSSI.
Now I want to increase its range and RSSI with coding.
So I want to know Is there any “increase antenna gain” on arduino sketch?

P.S. I’m using “ttn-abp” sketch from “ARDUINO IDM LMIC” framework library.
and here is my sketch

/*******************************************************************************
 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
 *
 * Permission is hereby granted, free of charge, to anyone
 * obtaining a copy of this document and accompanying files,
 * to do whatever they want with them without any restriction,
 * including, but not limited to, copying, modification and redistribution.
 * NO WARRANTY OF ANY KIND IS PROVIDED.
 *
 * This example sends a valid LoRaWAN packet with payload "Hello,
 * world!", using frequency and encryption settings matching those of
 * the The Things Network.
 *
 * This uses ABP (Activation-by-personalisation), where a DevAddr and
 * Session keys are preconfigured (unlike OTAA, where a DevEUI and
 * application key is configured, while the DevAddr and session keys are
 * assigned/generated in the over-the-air-activation procedure).
 *
 * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
 * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
 * violated by this sketch when left running for longer)!
 *
 * To use this sketch, first register your application and device with
 * the things network, to set or generate a DevAddr, NwkSKey and
 * AppSKey. Each device should have their own unique values for these
 * fields.
 *
 * Do not forget to define the radio type correctly in config.h.
 *
 *******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include <stdio.h>

//GPS
#include <SoftwareSerial.h>
#include <TinyGPS.h>
SoftwareSerial mySerial(8, 9);
// Module -> Arduino
//     TX -> Pin 8
//     RX -> Pin 9
TinyGPS gps;
void gpsdump(TinyGPS &gps);
void printFloat(double f, int digits = 2);
//GPS

// Count for interval losing
int count = 0;


// LoRaWAN NwkSKey, network session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
//c30464d6e404847c6b2bdcdfeee3e44a
static const PROGMEM u1_t NWKSKEY[16] = {  };

// LoRaWAN AppSKey, application session key
// This is the default Semtech key, which is used by the early prototype TTN
// network.
//6a997e1488064d3028579ea77942c623
static const u1_t PROGMEM APPSKEY[16] = {  };

// LoRaWAN end-device address (DevAddr)
//07ffa7f7
static const u4_t DEVADDR =  ;

// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, othe rwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }

// assign mydata size
static uint8_t mydata[48];
static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 1;

// Pin mapping
const lmic_pinmap lmic_pins = {
    .nss = 10,
    .rxtx = LMIC_UNUSED_PIN,
    .rst = 5,
    .dio = {2, 3, LMIC_UNUSED_PIN},
};

void onEvent (ev_t ev) 
{
  
    Serial.print(os_getTime());
    Serial.print(": ");
    switch(ev) {
        case EV_SCAN_TIMEOUT:
            Serial.println(F("EV_SCAN_TIMEOUT"));
            break;
        case EV_BEACON_FOUND:
            Serial.println(F("EV_BEACON_FOUND"));
            break;
        case EV_BEACON_MISSED:
            Serial.println(F("EV_BEACON_MISSED"));
            break;
        case EV_BEACON_TRACKED:
            Serial.println(F("EV_BEACON_TRACKED"));
            break;
        case EV_JOINING:
            Serial.println(F("EV_JOINING"));
            break;
        case EV_JOINED:
            Serial.println(F("EV_JOINED"));
            break;
        case EV_RFU1:
            Serial.println(F("EV_RFU1"));
            break;
        case EV_JOIN_FAILED:
            Serial.println(F("EV_JOIN_FAILED"));
            break;
        case EV_REJOIN_FAILED:
            Serial.println(F("EV_REJOIN_FAILED"));
            break;
        case EV_TXCOMPLETE:
            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
            if (LMIC.txrxFlags & TXRX_ACK)
              Serial.println(F("Received ack"));
            if (LMIC.dataLen) {
              Serial.println(F("Received "));
              Serial.println(LMIC.dataLen);
              Serial.println(F(" bytes of payload"));
            }
            // Schedule next transmission
            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
            break;
        case EV_LOST_TSYNC:
            Serial.println(F("EV_LOST_TSYNC"));
            break;
        case EV_RESET:
            Serial.println(F("EV_RESET"));
            break;
        case EV_RXCOMPLETE:
            // data received in ping slot
            Serial.println(F("EV_RXCOMPLETE"));
            break;
        case EV_LINK_DEAD:
            Serial.println(F("EV_LINK_DEAD"));
            break;
        case EV_LINK_ALIVE:
            Serial.println(F("EV_LINK_ALIVE"));
            break;
         default:
            Serial.println(F("Unknown event"));
            break;
    }
}

void do_send(osjob_t* j)
{

    // Check if there is not a current TX/RX job running
    if (LMIC.opmode & OP_TXRXPEND) 
    {
        Serial.println(F("OP_TXRXPEND, not sending"));
    } 
    else 
    {

        // GPS
        bool newdata = false;
        unsigned long start = millis();
        
        while (millis() - start < 5000) 
        {
          if (mySerial.available()) 
          {
            char c = mySerial.read();
            if (gps.encode(c)) 
            {
              newdata = true;
              break;
            }
          }
        }
        
        // get Lat/Long
        char tmp_string[64] = "GPS:";
        if (newdata) 
        {
          long lat, lon;
          float flat, flon;
          unsigned long age, date, time, chars;
          unsigned short sentences, failed;
          char tmp_char1[15];
          char tmp_char2[15];
          
          gps.f_get_position(&flat, &flon, &age);
          //Convert float to char*
          dtostrf(flat, 6, 6, tmp_char1);
          dtostrf(flon, 6, 6, tmp_char2);
          strcat(tmp_string, tmp_char1);
          strcat(tmp_string, ",");
          strcat(tmp_string, tmp_char2);
        }
        else
        {
          Serial.println("Cannot receive any GPS data.");
        }
        // GPS


        // count
        count++;
        char tmp_char3[3];
        itoa (count,tmp_char3,10);
        strcat(tmp_string, "|Count:");
        strcat(tmp_string, tmp_char3);
        // count

      
        // print payload string
        Serial.println(tmp_string);   
             
        //Convert char* to uint8_t
        memcpy (mydata, tmp_string, strlen(tmp_string)+1 );
        
        // Prepare upstream data transmission at the next possible time.
        LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0);
        Serial.println(F("Packet queued"));
    }
    // Next TX is scheduled after TX_COMPLETE event.
}

void setup() 
{
    Serial.begin(9600);
    Serial.println(F("Starting"));

    #ifdef VCC_ENABLE
     For Pinoccio Scout boards

    pinMode(VCC_ENABLE, OUTPUT);
    digitalWrite(VCC_ENABLE, HIGH);
    delay(1000);
    #endif

    // GPS
    mySerial.begin(9600);
    
    // LMIC init
    os_init();
    // Reset the MAC state. Session and pending data transfers will be discarded.
    LMIC_reset();

    // Set static session parameters. Instead of dynamically establishing a session
    // by joining the network, precomputed session parameters are be provided.
    #ifdef PROGMEM
    // On AVR, these values are stored in flash and only copied to RAM
    // once. Copy them to a temporary buffer here, LMIC_setSession will
    // copy them into a buffer of its own again.
    uint8_t appskey[sizeof(APPSKEY)];
    uint8_t nwkskey[sizeof(NWKSKEY)];
    memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
    memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
    LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
    #else
    // If not running an AVR with PROGMEM, just use the arrays directly
    LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
    #endif

    #if defined(CFG_eu868)
    // Set up the channels used by the Things Network, which corresponds
    // to the defaults of most gateways. Without this, only three base
    // channels from the LoRaWAN specification are used, which certainly
    // works, so it is good for debugging, but can overload those
    // frequencies, so be sure to configure the full frequency range of
    // your network here (unless your network autoconfigures them).
    // Setting up channels should happen after LMIC_setSession, as that
    // configures the minimal channel set.
    // NA-US channels 0-71 are configured automatically
    LMIC_setupChannel(0, 923200000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(1, 923400000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);      // g-band
    LMIC_setupChannel(2, 923600000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(3, 923800000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(4, 924000000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(5, 924200000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(6, 924400000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(7, 924600000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
    LMIC_setupChannel(8, 924800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  BAND_MILLI);      // g2-band
    // TTN defines an additional channel at 869.525Mhz using SF9 for class B
    // devices' ping slots. LMIC does not have an easy way to define set this
    // frequency and support for class B is spotty and untested, so this
    // frequency is not configured here.
    #elif defined(CFG_us915)
    // NA-US channels 0-71 are configured automatically
    // but only one group of 8 should (a subband) should be active
    // TTN recommends the second sub band, 1 in a zero based count.
    // https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
    LMIC_selectSubBand(0);
    #endif

    // Disable link check validation
    LMIC_setLinkCheckMode(0);

    // TTN uses SF9 for its RX2 window.
    LMIC.dn2Dr = DR_SF9;

    // Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
    LMIC_setDrTxpow(DR_SF7,14);

    // Start job
    do_send(&sendjob);
}

void loop() 
{
    os_runloop_once();
}

//GPS
void printFloat(double number, int digits)
{
  // Handle negative numbers
  if (number < 0.0) 
  {
     Serial.print('-');
     number = -number;
  }

  // Round correctly so that print(1.999, 2) prints as "2.00"
  double rounding = 0.5;
  for (uint8_t i=0; i<digits; ++i)
    rounding /= 10.0;
  
  number += rounding;

  // Extract the integer part of the number and print it
  unsigned long int_part = (unsigned long)number;
  double remainder = number - (double)int_part;
  Serial.print(int_part);

  // Print the decimal point, but only if there are digits beyond
  if (digits > 0)
    Serial.print("."); 

  // Extract digits from the remainder one at a time
  while (digits-- > 0) 
  {
    remainder *= 10.0;
    int toPrint = int(remainder);
    Serial.print(toPrint);
    remainder -= toPrint;
  }
}
1 Like

What are the legal ERP limits in your part of the world ?